DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry

Abstract

We report that Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 μm3 foils, 20 μm diameter wire, and >10 μm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 μm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 μm) and double (4 × 25 μm) copper x-pinches were driven at ~1 kA/ns. Lastly, moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.

Authors:
 [1];  [2];  [1];  [3];  [3];  [3];  [3];  [2];  [2];  [3];  [4];  [4];  [4];  [4];  [5];  [4];  [6]
  1. Johns Hopkins Univ., Baltimore, MD (United States)
  2. Pontificia Universidad Católica de Chile, Santiago (Chile)
  3. Univ. of Rochester, NY (United States)
  4. CNRS CEA, Ecole Polytechnique (France)
  5. Russian Academy of Sciences, Moscow (Russia)
  6. Université de Bordeaux-CNRS-CEA, CELIA, Talence (France)
Publication Date:
Research Org.:
Johns Hopkins Univ., Baltimore, MD (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1502138
Alternate Identifier(s):
OSTI ID: 1479133
Grant/Contract Number:  
NA0002955
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 89; Journal Issue: 10; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Valdivia, Maria Pia, Veloso, Felipe, Stutman, Dan, Stoeckl, Christian, Mileham, Chad, Begishev, Ildar A., Theobald, Wolfgang, Vescovi, Milenko, Useche, Wilmer, Regan, Sean P., Albertazzi, Bruno, Rigon, Gabriel, Mabey, Paul, Michel, Thibault, Pikuz, Sergey A., Koenig, Michel, and Casner, Alexis. X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry. United States: N. p., 2018. Web. doi:10.1063/1.5039342.
Valdivia, Maria Pia, Veloso, Felipe, Stutman, Dan, Stoeckl, Christian, Mileham, Chad, Begishev, Ildar A., Theobald, Wolfgang, Vescovi, Milenko, Useche, Wilmer, Regan, Sean P., Albertazzi, Bruno, Rigon, Gabriel, Mabey, Paul, Michel, Thibault, Pikuz, Sergey A., Koenig, Michel, & Casner, Alexis. X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry. United States. https://doi.org/10.1063/1.5039342
Valdivia, Maria Pia, Veloso, Felipe, Stutman, Dan, Stoeckl, Christian, Mileham, Chad, Begishev, Ildar A., Theobald, Wolfgang, Vescovi, Milenko, Useche, Wilmer, Regan, Sean P., Albertazzi, Bruno, Rigon, Gabriel, Mabey, Paul, Michel, Thibault, Pikuz, Sergey A., Koenig, Michel, and Casner, Alexis. Thu . "X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry". United States. https://doi.org/10.1063/1.5039342. https://www.osti.gov/servlets/purl/1502138.
@article{osti_1502138,
title = {X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry},
author = {Valdivia, Maria Pia and Veloso, Felipe and Stutman, Dan and Stoeckl, Christian and Mileham, Chad and Begishev, Ildar A. and Theobald, Wolfgang and Vescovi, Milenko and Useche, Wilmer and Regan, Sean P. and Albertazzi, Bruno and Rigon, Gabriel and Mabey, Paul and Michel, Thibault and Pikuz, Sergey A. and Koenig, Michel and Casner, Alexis},
abstractNote = {We report that Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 μm3 foils, 20 μm diameter wire, and >10 μm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 μm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 μm) and double (4 × 25 μm) copper x-pinches were driven at ~1 kA/ns. Lastly, moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.},
doi = {10.1063/1.5039342},
journal = {Review of Scientific Instruments},
number = 10,
volume = 89,
place = {United States},
year = {Thu Oct 25 00:00:00 EDT 2018},
month = {Thu Oct 25 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Simulated contrast curves for the 8 keV Talbot-Lau interferometer studied. Talbot orders: m = 1, 3, 5, were obtained from XWFP code. Expected Cu emission lines are shown as well.

Save / Share:

Works referenced in this record:

Talbot-Lau x-ray interferometry for high energy density plasma diagnostic
journal, November 2011

  • Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 82, Issue 11
  • DOI: 10.1063/1.3660808

Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
journal, March 2006

  • Pfeiffer, Franz; Weitkamp, Timm; Bunk, Oliver
  • Nature Physics, Vol. 2, Issue 4, p. 258-261
  • DOI: 10.1038/nphys265

A review of the dense Z -pinch
journal, June 2011


A spherical crystal imager for OMEGA EP
journal, March 2012

  • Stoeckl, C.; Fiksel, G.; Guy, D.
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3693348

Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)
journal, July 2016

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959158

He-like x-ray line emission from laser irradiated sources
journal, October 2002


High-energy x-ray backlighter spectrum measurements using calibrated image plates
journal, February 2011

  • Maddox, B. R.; Park, H. S.; Remington, B. A.
  • Review of Scientific Instruments, Vol. 82, Issue 2
  • DOI: 10.1063/1.3531979

Short-pulse laser-driven x-ray radiography
journal, January 2016

  • Brambrink, E.; Baton, S.; Koenig, M.
  • High Power Laser Science and Engineering, Vol. 4
  • DOI: 10.1017/hpl.2016.31

Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited)
journal, October 2008

  • Tommasini, R.; MacPhee, A.; Hey, D.
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.2953593

On evaluating x-ray imaging crystals with synchrotron radiation
journal, October 2018

  • Pereira, N. R.; Macrander, A. T.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5045569

Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV
journal, July 2014

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 85, Issue 7
  • DOI: 10.1063/1.4885467

XWFP: an x-ray wavefront propagation software package for the IDL computer language
conference, October 2004


High-resolution 17–75keV backlighters for high energy density experiments
journal, July 2008

  • Park, H. -S.; Maddox, B. R.; Giraldez, E.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2957918

Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)
journal, November 2014

  • Nagel, S. R.; Hilsabeck, T. J.; Bell, P. M.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890396

LXXVI. Facts relating to optical science. No. IV
journal, December 1836

  • Talbot, H. F.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 9, Issue 56
  • DOI: 10.1080/14786443608649032

Point-projection x-ray radiography using an X pinch as the radiation source
journal, January 2001

  • Shelkovenko, T. A.; Sinars, D. B.; Pikuz, S. A.
  • Review of Scientific Instruments, Vol. 72, Issue 1
  • DOI: 10.1063/1.1323252

Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets
journal, December 2013

  • Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.
  • Physics of Plasmas, Vol. 20, Issue 12
  • DOI: 10.1063/1.4848759

Scaling hot-electron generation to long-pulse, high-intensity laser–solid interactions
journal, May 2011

  • Nilson, P. M.; Solodov, A. A.; Myatt, J. F.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3560569

High-energy Kα radiography using high-intensity, short-pulse lasers
journal, May 2006

  • Park, H. -S.; Chambers, D. M.; Chung, H. -K.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2178775

Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches
journal, February 2013

  • Swadling, G. F.; Lebedev, S. V.; Niasse, N.
  • Physics of Plasmas, Vol. 20, Issue 2
  • DOI: 10.1063/1.4790520

A study of picosecond laser–solid interactions up to 10 19 W cm −2
journal, February 1997

  • Beg, F. N.; Bell, A. R.; Dangor, A. E.
  • Physics of Plasmas, Vol. 4, Issue 2
  • DOI: 10.1063/1.872103

Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic
journal, October 2013

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Journal of Applied Physics, Vol. 114, Issue 16
  • DOI: 10.1063/1.4827186

An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
journal, February 2016

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941441

Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics
journal, January 2001

  • Shelkovenko, T. A.; Sinars, D. B.; Pikuz, S. A.
  • Physics of Plasmas, Vol. 8, Issue 4
  • DOI: 10.1063/1.1351553

Hyperbolic lens design of local oscillator optics system for electron cyclotron emission imaging on J-TEXT
journal, October 2018

  • Xie, X. L.; Yang, Z. J.; Pan, X. M.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5035098

Slit-wire camera, a new diagnostics method for measurement of small scale high-energy density structures in hot plasmas
journal, June 2002

  • Choi, P.; Dumitrescu, C.; Wyndham, E.
  • Review of Scientific Instruments, Vol. 73, Issue 6
  • DOI: 10.1063/1.1480462

Works referencing / citing this record:

Characterization of high spatial resolution lithium fluoride X-ray detectors
journal, June 2019

  • Mabey, P.; Albertazzi, B.; Michel, Th.
  • Review of Scientific Instruments, Vol. 90, Issue 6
  • DOI: 10.1063/1.5092265

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.