DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Current advances on Talbot–Lau x-ray imaging diagnostics for high energy density experiments (invited)

Abstract

Talbot–Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot–Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014–1015 W/cm2. Laser pulse length (~10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 μm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ~60 μm diameter surrounded by low-density material of ~40 μm thickness with an outer diameter ratio of ~2.3. Attenuation at 8 keV was measured at ~20% for the dense core and ~10% for the low-density material. Instrumentalmore » and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. Furthermore, these results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5]; ORCiD logo [5];  [5];  [5];  [5]; ORCiD logo [5]; ORCiD logo [6];  [7]; ORCiD logo [8]; ORCiD logo [9];  [10]
  1. Univ. of California San Diego, La Jolla, CA (United States); Johns Hopkins Univ., Baltimore, MD (United States)
  2. Univ. de Valladolid (Spain)
  3. European XFEL GmbH, Schenefeld (Germany)
  4. General Atomics, San Diego, CA (United States)
  5. Univ. of Rochester, NY (United States)
  6. Univ. of Michigan, Ann Arbor, MI (United States)
  7. Johns Hopkins Univ., Laurel, MD (United States)
  8. Univ. of California San Diego, La Jolla, CA (United States)
  9. CEA-CESTA (France)
  10. ELI-NP, Inst. for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1922232
Alternate Identifier(s):
OSTI ID: 1896321
Grant/Contract Number:  
NA0004028; NA0003882; NA0003842; INTALAX
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 93; Journal Issue: 11; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; X-ray imaging; X-ray phase contrast imaging; High energy density physics; X-ray interferometry; Plasma properties and parameters

Citation Formats

Valdivia, M. P., Perez-Callejo, G., Bouffetier, V., Collins, IV, G. W., Stoeckl, C., Filkins, T., Mileham, C., Romanofsky, M., Begishev, I. A., Theobald, W., Klein, S. R., Schneider, M. K., Beg, F. N., Casner, A., and Stutman, D. Current advances on Talbot–Lau x-ray imaging diagnostics for high energy density experiments (invited). United States: N. p., 2022. Web. doi:10.1063/5.0101865.
Valdivia, M. P., Perez-Callejo, G., Bouffetier, V., Collins, IV, G. W., Stoeckl, C., Filkins, T., Mileham, C., Romanofsky, M., Begishev, I. A., Theobald, W., Klein, S. R., Schneider, M. K., Beg, F. N., Casner, A., & Stutman, D. Current advances on Talbot–Lau x-ray imaging diagnostics for high energy density experiments (invited). United States. https://doi.org/10.1063/5.0101865
Valdivia, M. P., Perez-Callejo, G., Bouffetier, V., Collins, IV, G. W., Stoeckl, C., Filkins, T., Mileham, C., Romanofsky, M., Begishev, I. A., Theobald, W., Klein, S. R., Schneider, M. K., Beg, F. N., Casner, A., and Stutman, D. Tue . "Current advances on Talbot–Lau x-ray imaging diagnostics for high energy density experiments (invited)". United States. https://doi.org/10.1063/5.0101865. https://www.osti.gov/servlets/purl/1922232.
@article{osti_1922232,
title = {Current advances on Talbot–Lau x-ray imaging diagnostics for high energy density experiments (invited)},
author = {Valdivia, M. P. and Perez-Callejo, G. and Bouffetier, V. and Collins, IV, G. W. and Stoeckl, C. and Filkins, T. and Mileham, C. and Romanofsky, M. and Begishev, I. A. and Theobald, W. and Klein, S. R. and Schneider, M. K. and Beg, F. N. and Casner, A. and Stutman, D.},
abstractNote = {Talbot–Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot–Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014–1015 W/cm2. Laser pulse length (~10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 μm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ~60 μm diameter surrounded by low-density material of ~40 μm thickness with an outer diameter ratio of ~2.3. Attenuation at 8 keV was measured at ~20% for the dense core and ~10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. Furthermore, these results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.},
doi = {10.1063/5.0101865},
journal = {Review of Scientific Instruments},
number = 11,
volume = 93,
place = {United States},
year = {Tue Nov 01 00:00:00 EDT 2022},
month = {Tue Nov 01 00:00:00 EDT 2022}
}

Works referenced in this record:

A journey through high-energy-density physics
journal, December 2018


Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA
journal, May 2017

  • Stoeckl, C.; Epstein, R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977918

High resolution monochromatic X-ray imaging system based on spherically bent crystals
conference, January 1997

  • Aglitskiy, Y.; Lehecka, T.; Obenschain, S.
  • The fourth international conference on dense z-pinches
  • DOI: 10.1063/1.53824

Design of a multilayer mirror monochromatic x-ray imager for the Z accelerator
journal, October 2004

  • Jones, B.; Deeney, C.; Pirela, A.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1789257

Picosecond X-Ray Laser Interferometry of Dense Plasmas
journal, July 2002


Picosecond-resolution soft-x-ray laser plasma interferometry
journal, January 2004

  • Filevich, Jorge; Rocca, Jorge J.; Marconi, Mario C.
  • Applied Optics, Vol. 43, Issue 19
  • DOI: 10.1364/ao.43.003938

Talbot-Lau x-ray interferometry for high energy density plasma diagnostic
journal, November 2011

  • Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 82, Issue 11
  • DOI: 10.1063/1.3660808

Advanced laser development and plasma-physics studies on the multiterawatt laser
journal, January 2021

  • Begishev, I. A.; Bagnoud, V.; Bahk, S. -W.
  • Applied Optics, Vol. 60, Issue 36
  • DOI: 10.1364/ao.443548

X-pinch. Part I
journal, April 2015


250 kA compact linear transformer driver for wire array z -pinch loads
journal, May 2011

  • Bott, S. C.; Haas, D. M.; Madden, R. E.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 14, Issue 5
  • DOI: 10.1103/PhysRevSTAB.14.050401

Monochromatic x-ray backlighting of wire-array z -pinch plasmas using spherically bent quartz crystals
journal, March 2003

  • Sinars, D. B.; Cuneo, M. E.; Bennett, G. R.
  • Review of Scientific Instruments, Vol. 74, Issue 3
  • DOI: 10.1063/1.1537853

Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
journal, March 2006

  • Pfeiffer, Franz; Weitkamp, Timm; Bunk, Oliver
  • Nature Physics, Vol. 2, Issue 4, p. 258-261
  • DOI: 10.1038/nphys265

Proof-of-concept Talbot–Lau x-ray interferometry with a high-intensity, high-repetition-rate, laser-driven K-alpha source
journal, January 2020

  • Bouffetier, V.; Ceurvorst, L.; Valdivia, M. P.
  • Applied Optics, Vol. 59, Issue 27
  • DOI: 10.1364/ao.398839

Implementation of a Talbot–Lau x-ray deflectometer diagnostic platform for the OMEGA EP laser
journal, February 2020

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 91, Issue 2
  • DOI: 10.1063/1.5123919

Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic
journal, June 2021

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 92, Issue 6
  • DOI: 10.1063/5.0043655

High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility
journal, January 1998

  • Koch, Jeffrey A.; Landen, Otto L.; Barbee, Troy W.
  • Applied Optics, Vol. 37, Issue 10, p. 1784-1795
  • DOI: 10.1364/ao.37.001784

Hard-X-ray dark-field imaging using a grating interferometer
journal, January 2008

  • Pfeiffer, F.; Bech, M.; Bunk, O.
  • Nature Materials, Vol. 7, Issue 2, p. 134-137
  • DOI: 10.1038/nmat2096

Moire Deflectometry: A Ray Deflection Approach To Optical Testing
journal, December 1985


Principles of Plasma Diagnostics: Second Edition
journal, November 2002


X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry
journal, October 2018

  • Valdivia, M. P.; Veloso, F.; Stutman, D.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039342

Talbot–Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments
journal, January 2018

  • Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian
  • Applied Optics, Vol. 57, Issue 2
  • DOI: 10.1364/AO.57.000138

TIA: A forward model and analyzer for Talbot interferometry experiments of dense plasmas
journal, April 2022

  • Pérez-Callejo, G.; Bouffetier, V.; Ceurvorst, L.
  • Physics of Plasmas, Vol. 29, Issue 4
  • DOI: 10.1063/5.0085822

High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas (invited)
journal, January 1997

  • Pikuz, S. A.; Shelkovenko, T. A.; Romanova, V. M.
  • Review of Scientific Instruments, Vol. 68, Issue 1
  • DOI: 10.1063/1.1147689

Laterally graded multilayer as x-ray mirror for the laser-induced plasma x-ray sources
conference, August 2017

  • Cheng, Xianchao; Tan, Bozhong; Cheng, Jinming
  • Advances in X-Ray/EUV Optics and Components XII
  • DOI: 10.1117/12.2272376

Direct comparison of wire, foil, and hybrid X-pinches on a 200 kA, 150 ns current driver
journal, February 2021

  • Collins, G. W.; Valdivia, M. P.; Hansen, S. B.
  • Journal of Applied Physics, Vol. 129, Issue 7
  • DOI: 10.1063/5.0035587

Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV
journal, July 2014

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 85, Issue 7
  • DOI: 10.1063/1.4885467

XWFP: an x-ray wavefront propagation software package for the IDL computer language
conference, October 2004


High-resolution 17–75keV backlighters for high energy density experiments
journal, July 2008

  • Park, H. -S.; Maddox, B. R.; Giraldez, E.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2957918

Hybrid X-pinch with conical electrodes
journal, November 2010

  • Shelkovenko, T. A.; Pikuz, S. A.; Cahill, A. D.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3504226

Investigation into the dynamics of laser-cut foil X-pinches and their potential use for high repetition rate operation
journal, July 2014

  • Collins, G. W.; Valdivia, M. P.; Zick, T. O.
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4889748

Implementation of Talbot–Lau x-ray deflectometry in the pulsed power environment using a copper X-pinch backlighter
journal, May 2020

  • Vescovi, Milenko; Valdivia, Maria Pia; Veloso, Felipe
  • Journal of Applied Physics, Vol. 127, Issue 20
  • DOI: 10.1063/5.0001910

Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry
journal, July 2008


Phase Tomography by X-ray Talbot Interferometry for Biological Imaging
journal, June 2006

  • Momose, Atsushi; Yashiro, Wataru; Takeda, Yoshihiro
  • Japanese Journal of Applied Physics, Vol. 45, Issue 6A, p. 5254-5262
  • DOI: 10.1143/JJAP.45.5254

Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics
journal, January 2022

  • Valdivia, M. P.; Collins IV, G. W.; Conti, F.
  • Plasma Physics and Controlled Fusion, Vol. 64, Issue 3
  • DOI: 10.1088/1361-6587/ac4b95

An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
journal, February 2016

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941441

Multilayer mirror monochromatic self-emission x-ray imaging on the Z accelerator
journal, October 2006

  • Jones, B.; Deeney, C.; Coverdale, C. A.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2220071