DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic

Abstract

Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10–150 J, 8–30 ps laser pulses, while two pulsed-power generators (~350 kA, 350 ns and ~200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >1023 cm–3. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. Furthermore, the results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [2];  [3]; ORCiD logo [4];  [5];  [2];  [2]; ORCiD logo [6];  [6];  [7];  [2]; ORCiD logo [5]; ORCiD logo [8]; ORCiD logo [3];  [2]
  1. Johns Hopkins Univ., Baltimore, MD (United States)
  2. Univ. of Rochester, NY (United States)
  3. Univ. of California San Diego, CA (United States)
  4. Univ. de Bordeaux-CNRS-CEA, Talence (France)
  5. Pontificia Univ. Catolica de Chile, Santiago (Chile)
  6. Univ. of Michigan, Ann Arbor, MI (United States)
  7. General Atomics, San Diego, CA (United States)
  8. CEA-CESTA (France)
Publication Date:
Research Org.:
Johns Hopkins Univ., Baltimore, MD (United States); Univ. of California San Diego, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1837686
Alternate Identifier(s):
OSTI ID: 1797613; OSTI ID: 1887291
Grant/Contract Number:  
NA0003882; NA0003842; NA0002955; SC0020005; 1171412; NA0004028
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 92; Journal Issue: 6; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Interferometry; Laser plasma interactions; Plasma properties and parameters; Radiography; X-ray imaging; High energy density physics; X-ray imaging, Talbot-Lau, Interferometry, HED, Diagnostics

Citation Formats

Valdivia, M. P., Stutman, D., Stoeckl, C., Theobald, W., Collins, IV, G. W., Bouffetier, V., Vescovi, M., Mileham, C., Begishev, I. A., Klein, S. R., Melean, R., Muller, S., Zou, J., Veloso, F., Casner, A., Beg, F. N., and Regan, S. P. Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic. United States: N. p., 2021. Web. doi:10.1063/5.0043655.
Valdivia, M. P., Stutman, D., Stoeckl, C., Theobald, W., Collins, IV, G. W., Bouffetier, V., Vescovi, M., Mileham, C., Begishev, I. A., Klein, S. R., Melean, R., Muller, S., Zou, J., Veloso, F., Casner, A., Beg, F. N., & Regan, S. P. Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic. United States. https://doi.org/10.1063/5.0043655
Valdivia, M. P., Stutman, D., Stoeckl, C., Theobald, W., Collins, IV, G. W., Bouffetier, V., Vescovi, M., Mileham, C., Begishev, I. A., Klein, S. R., Melean, R., Muller, S., Zou, J., Veloso, F., Casner, A., Beg, F. N., and Regan, S. P. Fri . "Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic". United States. https://doi.org/10.1063/5.0043655. https://www.osti.gov/servlets/purl/1837686.
@article{osti_1837686,
title = {Talbot-Lau x-ray deflectometer: Refraction-based HEDP imaging diagnostic},
author = {Valdivia, M. P. and Stutman, D. and Stoeckl, C. and Theobald, W. and Collins, IV, G. W. and Bouffetier, V. and Vescovi, M. and Mileham, C. and Begishev, I. A. and Klein, S. R. and Melean, R. and Muller, S. and Zou, J. and Veloso, F. and Casner, A. and Beg, F. N. and Regan, S. P.},
abstractNote = {Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10–150 J, 8–30 ps laser pulses, while two pulsed-power generators (~350 kA, 350 ns and ~200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >1023 cm–3. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. Furthermore, the results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.},
doi = {10.1063/5.0043655},
journal = {Review of Scientific Instruments},
number = 6,
volume = 92,
place = {United States},
year = {Fri Jun 18 00:00:00 EDT 2021},
month = {Fri Jun 18 00:00:00 EDT 2021}
}

Works referenced in this record:

Talbot-Lau x-ray interferometry for high energy density plasma diagnostic
journal, November 2011

  • Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 82, Issue 11
  • DOI: 10.1063/1.3660808

Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: collisional and collective effects
journal, September 2015

  • Nilson, P. M.; Solodov, A. A.; Davies, J. R.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 48, Issue 22
  • DOI: 10.1088/0953-4075/48/22/224001

250 kA compact linear transformer driver for wire array z -pinch loads
journal, May 2011

  • Bott, S. C.; Haas, D. M.; Madden, R. E.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 14, Issue 5
  • DOI: 10.1103/physrevstab.14.050401

Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources
journal, March 2006

  • Pfeiffer, Franz; Weitkamp, Timm; Bunk, Oliver
  • Nature Physics, Vol. 2, Issue 4, p. 258-261
  • DOI: 10.1038/nphys265

Realization of optical carpets in the Talbot and Talbot-Lau configurations
journal, January 2009

  • Case, William B.; Tomandl, Mathias; Deachapunya, Sarayut
  • Optics Express, Vol. 17, Issue 23
  • DOI: 10.1364/oe.17.020966

The Lau effect (a diffraction experiment with incoherent illumination)
journal, March 1979


Proof-of-concept Talbot–Lau x-ray interferometry with a high-intensity, high-repetition-rate, laser-driven K-alpha source
journal, January 2020

  • Bouffetier, V.; Ceurvorst, L.; Valdivia, M. P.
  • Applied Optics, Vol. 59, Issue 27
  • DOI: 10.1364/ao.398839

LLAMPÜDKEÑ: A high-current, low-impedance pulser employing an auxiliary exponential transmission line
journal, June 1997


X-ray phase contrast imaging by compact Talbot–Lau interferometer with a single transmission grating
journal, January 2014

  • Morimoto, Naoki; Fujino, Sho; Ohshima, Ken-ichi
  • Optics Letters, Vol. 39, Issue 15
  • DOI: 10.1364/ol.39.004297

Absolute calibration of image plates for electrons at energy between 100keV and 4MeV
journal, March 2008

  • Chen, Hui; Back, Norman L.; Bartal, Teresa
  • Review of Scientific Instruments, Vol. 79, Issue 3
  • DOI: 10.1063/1.2885045

Implementation of a Talbot–Lau x-ray deflectometer diagnostic platform for the OMEGA EP laser
journal, February 2020

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 91, Issue 2
  • DOI: 10.1063/1.5123919

In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science
journal, May 2012

  • Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.
  • Materials, Vol. 5, Issue 12
  • DOI: 10.3390/ma5050937

X-ray backlighter requirements for refraction-based electron density diagnostics through Talbot-Lau deflectometry
journal, October 2018

  • Valdivia, M. P.; Veloso, F.; Stutman, D.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5039342

Partially coherent diffraction effect between Lau and Talbot effects
journal, January 1988


Direct comparison of wire, foil, and hybrid X-pinches on a 200 kA, 150 ns current driver
journal, February 2021

  • Collins, G. W.; Valdivia, M. P.; Hansen, S. B.
  • Journal of Applied Physics, Vol. 129, Issue 7
  • DOI: 10.1063/5.0035587

Characterization and cross calibration of Agfa D4, D7, and D8 and Kodak SR45 x-ray films against direct exposure film at 4.0–5.5keV
journal, April 2006

  • Lanier, N. E.; Cowan, J. S.; Workman, J.
  • Review of Scientific Instruments, Vol. 77, Issue 4
  • DOI: 10.1063/1.2194509

Moiré deflectometry using the Talbot-Lau interferometer as refraction diagnostic for High Energy Density plasmas at energies below 10 keV
journal, July 2014

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Review of Scientific Instruments, Vol. 85, Issue 7
  • DOI: 10.1063/1.4885467

XWFP: an x-ray wavefront propagation software package for the IDL computer language
conference, October 2004


Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range
journal, October 2006

  • Marshall, F. J.; Knauer, J. P.; Anderson, D.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2221698

Hybrid X-pinch with conical electrodes
journal, November 2010

  • Shelkovenko, T. A.; Pikuz, S. A.; Cahill, A. D.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3504226

High-intensity laser-plasma interaction with wedge-shaped-cavity targets
journal, October 2010

  • Theobald, W.; Ovchinnikov, V.; Ivancic, S.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3484217

Investigation into the dynamics of laser-cut foil X-pinches and their potential use for high repetition rate operation
journal, July 2014

  • Collins, G. W.; Valdivia, M. P.; Zick, T. O.
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4889748

Implementation of Talbot–Lau x-ray deflectometry in the pulsed power environment using a copper X-pinch backlighter
journal, May 2020

  • Vescovi, Milenko; Valdivia, Maria Pia; Veloso, Felipe
  • Journal of Applied Physics, Vol. 127, Issue 20
  • DOI: 10.1063/5.0001910

Rayleigh-Taylor instability experiments on the LULI2000 laser in scaled conditions for young supernova remnants
journal, August 2019


The x ‐pinch as a point source of x rays for backlighting
journal, January 1995

  • Kalantar, D. H.; Hammer, D. A.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146219

Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic
journal, October 2013

  • Valdivia, M. P.; Stutman, D.; Finkenthal, M.
  • Journal of Applied Physics, Vol. 114, Issue 16
  • DOI: 10.1063/1.4827186

Inverse geometry for grating-based x-ray phase-contrast imaging
journal, September 2009

  • Donath, Tilman; Chabior, Michael; Pfeiffer, Franz
  • Journal of Applied Physics, Vol. 106, Issue 5, Article No. 054703
  • DOI: 10.1063/1.3208052

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Laser-Solid Interactions
journal, December 2010


Calibrating image plate sensitivity in the 700 to 5000 eV spectral energy range
conference, September 2013

  • Haugh, Michael J.; Lee, Joshua; Romano, Edward
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2024889

An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics
journal, February 2016

  • Valdivia, M. P.; Stutman, D.; Stoeckl, C.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941441

Development of optics for x-ray phase-contrast imaging of high energy density plasmas
journal, October 2010

  • Stutman, D.; Finkenthal, M.; Moldovan, N.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3479116