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X-ray Imaging diagnostics

Electron density diagnostics for HED/ICF
For low-Z matter probed at 1-100 keV: Refraction signatures >> Attenuation

Beryllium CH

RefractionAttenuation

5mm

XWFP simulation: T. Weitkamp, Advances in Computational 
Methods for X-Ray and Neutron Optics (2004)

TL for HEDP: Stutman et al, Rev. Sci. Instrum. 82, 113508 (2011)

Complex Optical Index:
𝑁 = 1 − 𝛿 + 𝑖𝛽



Refraction-based diagnostics

Phase change Electron density

LILAC simulation 
of a CH shell post-
processed to 
compare Phase-
Contrast imaging
using long length
propagation (XPCI) 
vs absorption 
radiographs with
15 µm source

Simulation: D. Cao (LLE). Post-processing L. Antonelli (York Plasma Physics Institute) and F. Barbato (CELIA)

Information extracted from 
x-ray refraction angle:



Talbot length:
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Talbot-Lau unperturbed and perturbed pattern by a PMMA rod performed with a 8keV X-ray tube 

Talbot Carpet
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𝟒𝜼² Talbot magnification:

𝑴𝑻 =
𝑳+𝑫

𝑳With: 

Talbot-Lau interferometry



Talbot-Lau X-ray Deflectometry

TL for HEDP: Valdivia et al., Journal Appl. Phys. 144 (2013); Ibid., RSI 85 (2014)

= 2.4µm = 3.8µm = 12µm

• (small) Grating rotation
-> Moiré fringes: 

Period ≈ g/θ

• Fringe shift proportional
to refraction angle

XWFP simulation: 8 keV TXD of CH shell

Moiré Fringe shift Areal Ne

Phase 
unwrapping

Numerical 
integration

35 µm

a) b) c)

Attenuation Phase Shift Dark field
=> Absorption => Refraction => Scattering



Simultaneous information

Wood splinter
Scatter ~ a0/a1

PropagationMoire

Fourier decomposition:

Loss of coherence 
Scatter due to 
micro-structures 
(~G0 period order)



Reference

3 mm
• Strong signature of ne gradients and interfaces 

• Spatial resolution
• Horizontal: Source-size 
• Vertical: ~ Period 

Measurements of ne gradient

Accurate detection of interfaces and (sharp and mild) ne

gradients in low-Z matter.
Talbot-Lau: Valdivia et al., RSI (2014)

Be rod

Beryllium CH
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Fringe shifts detection: few % to several periods.
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*Where refraction angle ‘α’ is 
equivalent to fringe shift ‘F’ 
scaled by the interferometer 
effective angular resolution 
‘Weff’ (g0 period and g0 to 
plasma distance ‘p’ ratio).

For a CH shell ~200 µm i) 0.1x solid ne ->(few keV)
ii) >100x solid ne -> (~20 keV)



Zaverage: composition (mixing)

‘r’ ~third degree polynomial of Zavg

Z-average: Valdivia et al., Applied Optics 54 (2014)

Fluorocarbon fiber
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Demonstrate ne diagnostics in high-intensity laser environment:

Adaptation to HEDLP

• Laser: 10-150 J, 8-30 ps
MTW, LULI2000, ECLIPSE (200mJ, 30fs), OMEGA-EP

•Targets
• Cu foil: 
• 500 x 500 x 20 µm3

• 200 x 200 x 12.5 µm3

• Cu wire: 20 µm diameter                                         
(backed by 500 x 500 x 12.5 µm3 Polymide)

• Cu grain: ~14-40 µm diameter                                       
(backed by 500 x 500 x 12.5 µm3 Polymide)

• Bookend targets (Cu wire and CH foils)
TXD backlighters (MTW): Valdivia et al., RSI 87 023505 (2016)

• Grating survival
• Talbot pattern formation
• Refraction measurement
• Electron density retrieval



305 µm

MTW: laser-driven backlighter

Areal density: 0.050 g/cm2

Density: 1.66 g/cm3 (~10% error)TL (laser backlighter): Valdivia et al., IEEE TPS 44 (2016)
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*Conversion efficiency: Cu BL



• Motivation: Investigate dependence of 
LPIs, such as two-plasmon decay, on 
plasma conditions

• TXD: image the plasma corona near critical 
density for long-pulse laser-plasma 
experiments (from nc/10 to nc) 

Ablation studies on Omega EP

Hot electron mitigation: J. Fein, PoP 24 (2017)
(a) AFR data. (b) Electron density profile.
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*Preliminary exps: LULI2000

First shots with plasma target:
• Test grating survival
• Demonstrate Moiré fringe formation

7% contrast with 
imaging plates 

(>27% with XR tube)

60 J, 10 ps



109 mm 554 mm 

• Talbot order m=7 (~70 cm long)

• Rails pre-aligned at JHU (XR tube)

• Source grating g0: ~1x1 mm² effective area 

20 µm 

1.0 mm

Experimental platform

G2 G1

G0

Omega EP TXD: M. P. Valdivia, RSI 91 (2020)



X-ray backlighter analysis: EP

• Laser parameters:  50 - 450 J, 10 ps

I ~ 1016-18 W/cm2

• Targets:
• 1.15 x 0.8 mm2 x 20 µm Cu foil 

• Irradiated at 45° and normal (Edge-on)

• 20 µm diameter Cu wire                                   
(backed by 1.15 x 0.8 mm2 x 20 µm polyamide)

• Bookend targets: Cu wire + CH foils

Wire 450J

Foil edge-on 150 J

Kα

Heα

Kα Heα

Kβ

Kβ



X-ray backlighter optimization:
-> Better spatial resolution: maintaining contrast

*Increase X-ray flux (SNR) and use monochromatic x-ray 
backlighting (higher energies with “best-resolution” targets)

Moire fringe Contrast:
Decreases with energy and “best-resolution” targets: 
emission outside curve (hot electrons)

#31616 

Cu foil Edge-on ~150 J, 10 ps, 
120 µm beam size 

#31604 

Cu foil @45° ~50 J, 10 ps,   
70 µm beam size 

200 µm Ta slab

TXD for Omega EP: M. P. Valdivia, RSI 91 (2020)

Omega EP TXD: FY18 & FY19

#31606 

Cu Bookend ~50 J, 10 ps,   
70 µm beam size 

Target I (W/cm2) N Ka (phot) E_Ka (J) Conv Eff Ka Err Conv eff

45° foil 2,36E+17 2,36E+17 1,47E-02 2,98E-04 0,60E-04

Edge on 2,79E+17 2,72E+17 3,28E-02 2,38E-04 0,48E-04

Contrast = 17% Contrast <10%

200 µm Ta slab

Contrast = N/A

Cu foil @45° ~50 J, 10 ps,   
110 µm beam size 

#29525 

Contrast = 21%

200 µm Ta slab



Target I (W.cm-2)
N_Ka
(phot)

E_Ka (J) Conv Eff Ka Err Conv eff

45° foil 2,36E+17 2,36E+17 1,47E-02 2,98E-04 0,60E-04

Edge on 2,79E+17 2,72E+17 3,28E-02 2,38E-04 0,48E-04

Contrast:      9-14% for EP-TXD I
6-9 % for EP-TXD II

* >25% with continuous x-ray source

Resolution: 62 – 78 µm for EP-TXD I
11 – 32 µm for EP-TXD II

#31624 

Driven CH foil: 
160 J, 2 ns, ~700 µm spot size

Fringe shift

>1023 cm-3 limit 
for 8 keV TXD

#31616 

Cu foil Edge-on ~150 J, 10 ps, 
120 µm beam size 

200 µm
Ta slab

125 µm 
CH foil

TXD for HEDP: M. P. Valdivia, RSI 92 (2021)

Nevertheless, TXD probed an expanding plasma front up to densities usually opaque 
to 4ω probe, for example.

*Contrast further reduced: self-emission



125 µm

Fringe shift

X-ray refraction angle 2D map

Refraction angle 
[µrads]

Two separate x-ray 
refraction angle 2D 
maps retrieved 
through TXD.

<10% fringe 
contrast: 
Shifts tracked 
manually and 
individually. 

Overview of TXD diagnostics for HEDP: M. P. Valdivia, RSI 92 (2021)



Ablation front profiles

• Low contrast and poor SNR: x-ray refraction angle mapping was preferred:

Independent FLASH simulations:
Comparison between the x-ray
refraction angle 2D maps
obtained by post-processing the
two FLASH simulations is shown.

1. Victorien Bouffetier (U. Bordeaux)
2. Kazuki Matsuo (UCSD)



*Refraction angle post-processing

1. Victorien Bouffetier (U. Bordeaux)



• Fringe shifts and ablation front (>1025 cm-3 limit
of TXD diagnostic) observed

CH foil ablation front: follow-up

LBS experiment (FY21): Driving beam: 150 J, 1 ns, 700 μm spot size. 
Backlighter beam: 150 J, 10 ps, 120 μm spot size, Δt=0.5 ns

• 2D maps: Phase, Transmission, and Dark-
field retrieved with Talbot Interferometry
Analyzer (TIA) code.

• Ex-situ reference Moire image from phase-
stepping methods (on-site x-ray station).

• Once backlighter optimization is achieved: higher Moire fringe contrast will enable improved
electron density, scatter, and elemental composition diagnostic capabilities for HEDP.

• Further enhancement expected from: Monochromatic TXD diagnostics

• Advanced methods: TIA code and ex-situ reference images obtained through Phase-Stepping.

• Enhanced contrast: refraction-based
phase-contrast imaging (right).

*TIA: G. Perez-Callejo, Applied Optics Accepted (2022)



• Demonstration of reference Moire image acquisition through phase-stepping:
accurate Phase, Transmission, and Dark-field retrieval.
* No additional laser shot required to obtain a reference image.

• Moire images: yellow FOV from x-ray alignment station at LLE

• Last panel: One Phase-Stepping image (best correlated)

*Phase-stepping ex-situ reference



*Dark-Field images from TXD

Transmission

Dark-Field

Dark-Field imaging of irradiated foils: G. Perez-Callejo, manuscript in preparation



Monochromatic TXD

Goal: Increase Moire contrast through x-ray backlighter improvement. Based on results 
from previous Omega EP campaigns, monochromatic x-ray sources will be beneficial

8 keV reflection

Broad spectrum

Test with Cu x-ray tube (continuous source)

C ~30% C ~35%



Monochromatic MTW (FY21) 

CCD: Direct beam and reflection

… beam block added

IP’s

XRCCD

X-ray station images:

First tests on MTW (FY21): Very low x-ray flux on CCD detector:

• New source gratings have lower transmission (fabrication)

• Multi-Layer mirror: reflectivity of ~25% (of 8 keV energy)

• Mirror alignment extremely sensitive (reflection angle)

Contrast:  X-ray CCD ~20%
Image Plates ~4%

Contrast: ~8%Monochromatic TXD image 



Monochromatic EP-TXD

EP-M-TXD diagnostic rail

Backlighter laser parameters:  50 - 450 J, 10 ps

G2

G1

G1

G0 G0

G0

BL target

Driven 
target

Multilayer 
mirror



563rd Annual Meeting of the APS Division of Plasma Physics, November 8-12, 2021

• Diagnostic performance compromised: low flux at detector (~50 photons per pixel vs.
>300 expected from previous campaigns considering ~25% mirror reflectivity)

• Backlighter: Edge-on Cu foil -> Best flux for ~5° rotation

• New source grating fabrication methods reduced transmission by a factor of ~3-4x

EP-M-TXD campaign (FY21)
*No driven shots



Monochromatic TXD: MTW FY22 

Changes from previous campaign:

• Old source gratings (x4)

• XRCCD and G0 protective filter (x2)

• TXD rail alignment: 

Dedicated XR station setup for MTW



Changes from previous campaign:

• Old source gratings (x4)

• XRCCD and G0 protective filter (x2)

• TXD rail alignment: 

Dedicated XR station setup for MTW

X-ray alignment images:
- Continuous x-ray tube (Cu anode)

Monochromatic TXD: MTW FY22 



Changes from previous campaign:

• Old source gratings (x4)

• XRCCD and G0 protective filter (x2)

• TXD rail alignment: 

Dedicated XR station setup for MTW

MTW image

Monochromatic TXD: MTW FY22 



1) Rail alignment (27 J, 20 ps, ~8 x1014 W/cm2): 

Pulse length: 10, 20, ~60-80 ps

Intensity: 2 x1014 – 1 x1015 W/cm2

Targets:
Foils w/ 3D printed stalks: less background
Cu wires (CH backed): old stalks
Orientation (~45° to Edge-on): Alignment

M-TXD: MTW backlighters

Target defocusing: laser spot size (x-ray LOS change)

Systematic studies: Rail alignment, target, laser pulse length and energy

Rail #1

3) Cu foil orientation (29 J, 84 ps, ~3 x1014 W/cm2): 

50° 70° 80°

2) Target type (36 J, 57 ps, ~4 x1014 W/cm2): 

Cu foil @45° Cu Wire Cu foil Edge-on

Spatial resolution: 
~10 µm for 50° foil
~8 µm   for 70° foil

~6 µm   for 80° foil 
* Detector limit: 5.5 µm

Contrast: 25%
Rail #3

Contrast: ~10%

Contrast: 30% Contrast: 27% Contrast: 28%



Reference image: 

• Not available from experiment or Phase-Stepping 

• MTW reference with different BL specs: 

• TIA code: backlighter profile feature
• Correlation methods to match fringes

M-TXD: MTW backlighters

Retrieval: Phase, Transmission, and Dark-Field

PMMA rod: 750 µm diam.

XRCCD image 29 J, 84 ps, 3.5x1014 W/cm2 27 J, 20 ps, 7.5x1014 W/cm2

36 J, 57 ps, 4.1x1014 W/cm2

Contrast: 29% Contrast: 26%

Contrast: 24%

Pending data analysis: 

SNR, Flux comparison, Spectra, Conversion efficiency, Resolution… related to laser intensity, targets, etc



Future experiments (FY22Q4)

NLUF:
With Dan Haberberger, Alex Shvydky (LLE)

Goal:
Map electron density gradient of irradiated-shell with TXD

• Experimental results will be compared with simulated FLASH images
• TIA code will be benchmarked: post-processed images with experimental results 

and XWFP simulations using FLASH ne profiles

UV



Future experiments (FY22Q4)

PJX

AFRShell

UV
BL

G0



TXD capabilities:

• Areal ne gradients detection through refraction (and attenuation)

• Micro-turbulence and material mixing through Z-average

• Hydrodynamic instability through scatter (Dark-Field) 

• Enabled by new methods and algorithms: TIA code, Phase-Stepping, etc

TXD tested in HED environment:

• MTW

• *LULI

• *ECLIPSE

• OMEGA-EP

• *XFEL: SACLA

• *Pulsed-Power (x-pinch x-ray sources): Llampudken and GenASIS

Summary

*Not shown



Back-up slides

TXD tested in HED environment:

• XFEL: SACLA

• TIA code:
• SACLA analysis

• Code capabilities

• Future experiments: LCLS-MEC (XFEL)
• Foams: Shock dynamics

• Pulsed-Power 
• Motivation: MagLIF 

• GenASIS results



XFEL: XPCI with TXD

ൗδ
β

763rd Annual Meeting of the APS Division of Plasma Physics, November 8-12, 2021

Monochromatic TXD with
XFEL beam at SACLA:
metallic foils irradiated.

• Phase, attenuation, and dark-field images
retrieved using the TIA software: resolution
~11 µm but can be optimized to ~2 µm

• Compared to propagative X-ray Phase Contrast
Imaging (XPCI) method, no assumption is made
to retrieve transmission and phase images,
enabling an absolute measurement of the
refractive index.



Moire images delivered a ~50% fringe contrast using a high Talbot order (m=7). Two foil targets probed at different times are shown. TIA code used to 
retrieve attenuation, dark-field, and phase images. There is a clear distinction between a mid-Z (Al) and high-Z (Cu) material.



Advanced retrieval methods: TIA§

§ Talbot Interferometry Analyzer: G. Perez-Callejo, Applied Optics, accepted (2022)

Cu foil irradiated by 5 ns laser pulse (~1013 W/cm2) at SACLA. Attenuation, phase, and 
dark-field maps retrieved through TIA code. Initial results (top) improved through 
implementation of additional algorithm capabilities (bottom).



§ Talbot Interferometry Analyzer: G. Perez-Callejo, Applied Optics, accepted (2022)

Advanced retrieval methods: TIA§



Future experiments: LCLS-MEC

PJX

Shock studies: Foam targets



LCLS-MEC: Shock dynamics

PJX



Pulsed-power motivation



X-pinch x-ray backlighter

Motivation: Image HED object in the pulsed power environment

• X-pinches: x-ray sources for 
point projection radiography, 
lithography, diffraction, and 
absorption spectroscopy

• Three types tested on GenASIS 
current driver (200 kA, 150 ns)



Laser-cut: GenASIS

• Laser-cut x-pinches: Best spatial 
resolution to date out of all TXD 
adaptations

• Highly reproducible, <5 µm Cu k-alpha 
emission within contrast curve. High 
contrast using image plate detectors

X-pinch x-ray sources for TXD: M. P. Valdivia, PPCF  64 (2022)



X-pinch emission: G. Collins, et al., J. Appl. Phys.  129 (2021)

X-pinch for TXD: M. P. Valdivia, PPCF  64 (2022)



X-pinch x-ray sources for TXD: M. P. Valdivia, PPCF  64 (2022)


