DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain-Induced Lateral Heterostructures in Patterned Semiconductor Nanomembranes for Micro- and Optoelectronics

Abstract

The ability to tailor the energy band lineup of semiconductor materials plays a key role in the development of many electronic and optoelectronic devices, and normally relies on heteroepitaxy. Here we report a different method, based on strain engineering, for the controlled introduction of variations in bandgap energy with lateral position in thin films. External stress is applied on Ge nanomembranes stacked with an array of amorphous-Si pillars, in order to create a non-uniform strain (and therefore bandgap energy) distribution commensurate with the sample thickness variations. The resulting strain profiles are mapped using Bragg diffraction with a hard x-ray probe featuring nanoscale spatial resolution. Compared with traditional heterostructures grown by epitaxial techniques, these strain-engineered samples involve a single chemical composition, and are not limited in the choice of compatible materials by any restriction imposed by lattice-matching requirements. Furthermore, their energy band lineups can be patterned in nearly arbitrary shapes using nanolithography to control the thickness profile, and can be tuned actively by varying the applied stress. As a result, these structures are attractive for a wide range of device applications (including lasers, LEDs, solar cells, and thermoelectrics) that require complex heterostructure lineups with multiple bandgap energies.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2];  [2];  [3]; ORCiD logo [3]; ORCiD logo [3];  [3];  [4];  [5];  [2]; ORCiD logo [1]
  1. Boston Univ., MA (United States)
  2. Univ. of Wisconsin, Madison, WI (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  4. Columbia Univ., New York, NY (United States)
  5. Boston Univ., MA (United States); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1812500
Alternate Identifier(s):
OSTI ID: 1832529
Report Number(s):
BNL-221958-2021-JAAM
Journal ID: ISSN 2574-0970
Grant/Contract Number:  
SC0012704; FG02-03ER46028; DMR-1121288
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Nano Materials
Additional Journal Information:
Journal Volume: 4; Journal Issue: 6; Journal ID: ISSN 2574-0970
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; strain engineering; semiconductor nanomembranes; nanofabrication patterning; X-ray nanodiffraction imaging; energy band lineups

Citation Formats

Gok, Abdullah, Wang, Xiaowei, Scott, Shelley, Bhat, Abhishek, Yan, Hanfei, Pattammattel, Ajith, Nazaretski, Evgeny, Chu, Yong S., Huang, Zicong, Osgood, Richard M., Lagally, Max G., and Paiella, Roberto. Strain-Induced Lateral Heterostructures in Patterned Semiconductor Nanomembranes for Micro- and Optoelectronics. United States: N. p., 2021. Web. doi:10.1021/acsanm.1c00966.
Gok, Abdullah, Wang, Xiaowei, Scott, Shelley, Bhat, Abhishek, Yan, Hanfei, Pattammattel, Ajith, Nazaretski, Evgeny, Chu, Yong S., Huang, Zicong, Osgood, Richard M., Lagally, Max G., & Paiella, Roberto. Strain-Induced Lateral Heterostructures in Patterned Semiconductor Nanomembranes for Micro- and Optoelectronics. United States. https://doi.org/10.1021/acsanm.1c00966
Gok, Abdullah, Wang, Xiaowei, Scott, Shelley, Bhat, Abhishek, Yan, Hanfei, Pattammattel, Ajith, Nazaretski, Evgeny, Chu, Yong S., Huang, Zicong, Osgood, Richard M., Lagally, Max G., and Paiella, Roberto. Thu . "Strain-Induced Lateral Heterostructures in Patterned Semiconductor Nanomembranes for Micro- and Optoelectronics". United States. https://doi.org/10.1021/acsanm.1c00966. https://www.osti.gov/servlets/purl/1812500.
@article{osti_1812500,
title = {Strain-Induced Lateral Heterostructures in Patterned Semiconductor Nanomembranes for Micro- and Optoelectronics},
author = {Gok, Abdullah and Wang, Xiaowei and Scott, Shelley and Bhat, Abhishek and Yan, Hanfei and Pattammattel, Ajith and Nazaretski, Evgeny and Chu, Yong S. and Huang, Zicong and Osgood, Richard M. and Lagally, Max G. and Paiella, Roberto},
abstractNote = {The ability to tailor the energy band lineup of semiconductor materials plays a key role in the development of many electronic and optoelectronic devices, and normally relies on heteroepitaxy. Here we report a different method, based on strain engineering, for the controlled introduction of variations in bandgap energy with lateral position in thin films. External stress is applied on Ge nanomembranes stacked with an array of amorphous-Si pillars, in order to create a non-uniform strain (and therefore bandgap energy) distribution commensurate with the sample thickness variations. The resulting strain profiles are mapped using Bragg diffraction with a hard x-ray probe featuring nanoscale spatial resolution. Compared with traditional heterostructures grown by epitaxial techniques, these strain-engineered samples involve a single chemical composition, and are not limited in the choice of compatible materials by any restriction imposed by lattice-matching requirements. Furthermore, their energy band lineups can be patterned in nearly arbitrary shapes using nanolithography to control the thickness profile, and can be tuned actively by varying the applied stress. As a result, these structures are attractive for a wide range of device applications (including lasers, LEDs, solar cells, and thermoelectrics) that require complex heterostructure lineups with multiple bandgap energies.},
doi = {10.1021/acsanm.1c00966},
journal = {ACS Applied Nano Materials},
number = 6,
volume = 4,
place = {United States},
year = {Thu Jun 10 00:00:00 EDT 2021},
month = {Thu Jun 10 00:00:00 EDT 2021}
}

Works referenced in this record:

Strained-Germanium Nanostructures for Infrared Photonics
journal, March 2014

  • Boztug, Cicek; Sánchez-Pérez, José R.; Cavallo, Francesca
  • ACS Nano, Vol. 8, Issue 4, p. 3136-3151
  • DOI: 10.1021/nn404739b

Scanning x-ray diffraction with 200nm spatial resolution
journal, May 2008

  • Hanke, M.; Dubslaff, M.; Schmidbauer, M.
  • Applied Physics Letters, Vol. 92, Issue 19
  • DOI: 10.1063/1.2929374

Optical gain in single tensile-strained germanium photonic wire
journal, January 2011

  • de Kersauson, M.; Kurdi, M. El; David, S.
  • Optics Express, Vol. 19, Issue 19
  • DOI: 10.1364/OE.19.017925

Strain-engineered artificial atom as a broad-spectrum solar energy funnel
journal, November 2012


Tuning the Electro-optical Properties of Germanium Nanowires by Tensile Strain
journal, February 2012

  • Greil, J.; Lugstein, A.; Zeiner, C.
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303288g

Mechano-electronic Superlattices in Silicon Nanoribbons
journal, February 2009

  • Huang, Minghuang; Ritz, Clark S.; Novakovic, Bozidar
  • ACS Nano, Vol. 3, Issue 3
  • DOI: 10.1021/nn8008883

Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain
journal, February 2013

  • Signorello, Giorgio; Karg, Siegfried; Björk, Mikael T.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl303694c

Reversible Control of In‐Plane Elastic Stress Tensor in Nanomembranes
journal, February 2016

  • Martín‐Sánchez, Javier; Trotta, Rinaldo; Piredda, Giovanni
  • Advanced Optical Materials, Vol. 4, Issue 5
  • DOI: 10.1002/adom.201500779

Synthesis, assembly and applications of semiconductor nanomembranes
journal, September 2011

  • Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G.
  • Nature, Vol. 477, Issue 7362, p. 45-53
  • DOI: 10.1038/nature10381

Strain engineering and mechanical assembly of silicon/germanium nanomembranes
journal, June 2018

  • Guo, Qinglei; Di, Zengfeng; Lagally, Max G.
  • Materials Science and Engineering: R: Reports, Vol. 128
  • DOI: 10.1016/j.mser.2018.02.002

Symmetry in Strain Engineering of Nanomembranes: Making New Strained Materials
journal, June 2011

  • Paskiewicz, Deborah M.; Scott, Shelley A.; Savage, Donald E.
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn2009672

Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%
journal, January 2012

  • Minamisawa, R. A.; Süess, M. J.; Spolenak, R.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2102

Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission
journal, June 2016

  • Yin, Jian; Cui, Xiaorui; Wang, Xiaowei
  • Applied Physics Letters, Vol. 108, Issue 24
  • DOI: 10.1063/1.4954188

X-ray Nanodiffraction on a Single SiGe Quantum Dot inside a Functioning Field-Effect Transistor
journal, July 2011

  • Hrauda, Nina; Zhang, Jianjun; Wintersberger, Eugen
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl2013289

Complete Strain Mapping of Nanosheets of Tantalum Disulfide
journal, August 2020

  • Cao, Yue; Assefa, Tadesse; Banerjee, Soham
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 38
  • DOI: 10.1021/acsami.0c06517

Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges
journal, November 2013

  • Etzelstorfer, Tanja; Süess, Martin J.; Schiefler, Gustav L.
  • Journal of Synchrotron Radiation, Vol. 21, Issue 1
  • DOI: 10.1107/S1600577513025459

Strained germanium thin film membrane on silicon substrate for optoelectronics
journal, January 2011

  • Nam, Donguk; Sukhdeo, Devanand; Roy, Arunanshu
  • Optics Express, Vol. 19, Issue 27
  • DOI: 10.1364/OE.19.025866

Electronic Phase Diagram of Single-Element Silicon “Strain” Superlattices
journal, July 2010


Observation of quantum confinement by strain gradients
journal, September 1991


Grating-coupled mid-infrared light emission from tensilely strained germanium nanomembranes
journal, November 2013

  • Boztug, Cicek; Sánchez-Pérez, José R.; Yin, Jian
  • Applied Physics Letters, Vol. 103, Issue 20
  • DOI: 10.1063/1.4830377

Tensile strain mapping in flat germanium membranes
journal, April 2014

  • Rhead, S. D.; Halpin, J. E.; Shah, V. A.
  • Applied Physics Letters, Vol. 104, Issue 17
  • DOI: 10.1063/1.4874836

Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks
journal, October 2001


Direct-bandgap light-emitting germanium in tensilely strained nanomembranes
journal, November 2011

  • Sanchez-Perez, J. R.; Boztug, C.; Chen, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 47, p. 18893-18898
  • DOI: 10.1073/pnas.1107968108

Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs / GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress
journal, February 2010


Ultrawide strain-tuning of light emission from InGaAs nanomembranes
journal, November 2018

  • Wang, Xiaowei; Cui, Xiaorui; Bhat, Abhishek
  • Applied Physics Letters, Vol. 113, Issue 20
  • DOI: 10.1063/1.5055869

Mechanical properties of hydrogenated amorphous silicon (a-Si:H) particles
journal, November 2019

  • Jiang, Taizhi; Khabaz, Fardin; Marne, Aniket
  • Journal of Applied Physics, Vol. 126, Issue 20
  • DOI: 10.1063/1.5117282

Surface X-ray diffraction
journal, May 1992


Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs
journal, August 2009


Low-threshold optically pumped lasing in highly strained germanium nanowires
journal, November 2017


Strain-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators
journal, December 2017

  • Martín-Sánchez, Javier; Trotta, Rinaldo; Mariscal, Antonio
  • Semiconductor Science and Technology, Vol. 33, Issue 1
  • DOI: 10.1088/1361-6641/aa9b53

Extending the emission wavelength of Ge nanopillars to 225 μm using silicon nitride stressors
journal, January 2015

  • Millar, R. W.; Gallacher, K.; Samarelli, A.
  • Optics Express, Vol. 23, Issue 14
  • DOI: 10.1364/OE.23.018193

Lasing in strained germanium microbridges
journal, June 2019


Nanoscale silicon-on-insulator deformation induced by stressed liner structures
journal, April 2011

  • Murray, Conal E.; Ying, A.; Polvino, S. M.
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3579421

Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires
journal, May 2016


High speed p-type SiGe modulation-doped field-effect transistors
journal, March 1996

  • Arafa, M.; Fay, P.; Ismail, K.
  • IEEE Electron Device Letters, Vol. 17, Issue 3
  • DOI: 10.1109/55.485188

Monolayer MoS 2 Strained to 1.3% With a Microelectromechanical System
journal, April 2019

  • Christopher, Jason W.; Vutukuru, Mounika; Lloyd, David
  • Journal of Microelectromechanical Systems, Vol. 28, Issue 2
  • DOI: 10.1109/JMEMS.2018.2877983

Strain-Induced Pseudoheterostructure Nanowires Confining Carriers at Room Temperature with Nanoscale-Tunable Band Profiles
journal, June 2013

  • Nam, Donguk; Sukhdeo, David S.; Kang, Ju-Hyung
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401042n

Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
journal, August 1996

  • Fischetti, M. V.; Laux, S. E.
  • Journal of Applied Physics, Vol. 80, Issue 4, p. 2234-2252
  • DOI: 10.1063/1.363052

“Soft Si”: Effective Stiffness of Supported Crystalline Nanomembranes
journal, June 2011

  • Cavallo, Francesca; Grierson, David S.; Turner, Kevin T.
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn200461g

Patterning-induced strain relief in single lithographic SiGe nanostructures studied by nanobeam x-ray diffraction
journal, March 2012


Tensile Strained Germanium Nanowires Measured by Photocurrent Spectroscopy and X-ray Microdiffraction
journal, March 2015

  • Guilloy, Kevin; Pauc, Nicolas; Gassenq, Alban
  • Nano Letters, Vol. 15, Issue 4
  • DOI: 10.1021/nl5048219