skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical Properties of Tensilely Strained Ge Nanomembranes

Abstract

Group-IV semiconductors, which provide the leading materials platform of micro- electronics, are generally unsuitable for light emitting device applications because of their indirect- bandgap nature. This property currently limits the large-scale integration of electronic and photonic functionalities on Si chips. The introduction of tensile strain in Ge, which has the effect of lowering the direct conduction-band minimum relative to the indirect valleys, is a promising approach to address this challenge. Here we review recent work focused on the basic science and technology of mechanically stressed Ge nanomembranes, i.e., single-crystal sheets with thicknesses of a few tens of nanometers, which can sustain particularly large strain levels before the onset of plastic deformation. These nanomaterials have been employed to demonstrate large strain-enhanced photoluminescence, population inversion under optical pumping, and the formation of direct-bandgap Ge. Furthermore, Si-based photonic-crystal cavities have been developed that can be combined with these Ge nanomembranes without limiting their mechanical flexibility. These results highlight the potential of strained Ge as a CMOS-compatible laser material, and more in general the promise of nanomembrane strain engineering for novel device technologies.

Authors:
ORCiD logo [1];  [2]
  1. Boston Univ., Boston, MA (United States). Dept. of Electrical and Computer Engineering and Photonics Center
  2. Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1511044
Grant/Contract Number:  
FG02-03ER46028
Resource Type:
Accepted Manuscript
Journal Name:
Nanomaterials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 6; Journal ID: ISSN 2079-4991
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nanomembranes; optical gain media; group-IV semiconductors; strain engineering

Citation Formats

Paiella, Roberto, and Lagally, Max G. Optical Properties of Tensilely Strained Ge Nanomembranes. United States: N. p., 2018. Web. doi:10.3390/nano8060407.
Paiella, Roberto, & Lagally, Max G. Optical Properties of Tensilely Strained Ge Nanomembranes. United States. doi:10.3390/nano8060407.
Paiella, Roberto, and Lagally, Max G. Wed . "Optical Properties of Tensilely Strained Ge Nanomembranes". United States. doi:10.3390/nano8060407. https://www.osti.gov/servlets/purl/1511044.
@article{osti_1511044,
title = {Optical Properties of Tensilely Strained Ge Nanomembranes},
author = {Paiella, Roberto and Lagally, Max G.},
abstractNote = {Group-IV semiconductors, which provide the leading materials platform of micro- electronics, are generally unsuitable for light emitting device applications because of their indirect- bandgap nature. This property currently limits the large-scale integration of electronic and photonic functionalities on Si chips. The introduction of tensile strain in Ge, which has the effect of lowering the direct conduction-band minimum relative to the indirect valleys, is a promising approach to address this challenge. Here we review recent work focused on the basic science and technology of mechanically stressed Ge nanomembranes, i.e., single-crystal sheets with thicknesses of a few tens of nanometers, which can sustain particularly large strain levels before the onset of plastic deformation. These nanomaterials have been employed to demonstrate large strain-enhanced photoluminescence, population inversion under optical pumping, and the formation of direct-bandgap Ge. Furthermore, Si-based photonic-crystal cavities have been developed that can be combined with these Ge nanomembranes without limiting their mechanical flexibility. These results highlight the potential of strained Ge as a CMOS-compatible laser material, and more in general the promise of nanomembrane strain engineering for novel device technologies.},
doi = {10.3390/nano8060407},
journal = {Nanomaterials},
number = 6,
volume = 8,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Strained-Germanium Nanostructures for Infrared Photonics
journal, March 2014

  • Boztug, Cicek; Sánchez-Pérez, José R.; Cavallo, Francesca
  • ACS Nano, Vol. 8, Issue 4, p. 3136-3151
  • DOI: 10.1021/nn404739b

Tensile-strained germanium microdisks with circular Bragg reflectors
journal, February 2016

  • El Kurdi, M.; Prost, M.; Ghrib, A.
  • Applied Physics Letters, Vol. 108, Issue 9
  • DOI: 10.1063/1.4942891

Control of direct band gap emission of bulk germanium by mechanical tensile strain
journal, January 2010

  • El Kurdi, M.; Bertin, H.; Martincic, E.
  • Applied Physics Letters, Vol. 96, Issue 4
  • DOI: 10.1063/1.3297883

Semiconductors turn soft: inorganic nanomembranes
journal, January 2010

  • Cavallo, Francesca; Lagally, Max G.
  • Soft Matter, Vol. 6, Issue 3
  • DOI: 10.1039/B916582G

Enhanced direct bandgap emission in germanium by micromechanical strain engineering
journal, January 2009

  • Lim, Peng Huei; Park, Sungbong; Ishikawa, Yasuhiko
  • Optics Express, Vol. 17, Issue 18
  • DOI: 10.1364/OE.17.016358

Strain-induced changes to the electronic structure of germanium
journal, April 2012


High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition
journal, February 2011

  • Jakomin, R.; de Kersauson, M.; El Kurdi, M.
  • Applied Physics Letters, Vol. 98, Issue 9
  • DOI: 10.1063/1.3559231

Optical gain in single tensile-strained germanium photonic wire
journal, January 2011

  • de Kersauson, M.; Kurdi, M. El; David, S.
  • Optics Express, Vol. 19, Issue 19
  • DOI: 10.1364/OE.19.017925

Tensilely Strained Germanium Nanomembranes as Infrared Optical Gain Media
journal, November 2012


Intrinsic and extrinsic diffusion of indium in germanium
journal, September 2009

  • Kube, R.; Bracht, H.; Chroneos, A.
  • Journal of Applied Physics, Vol. 106, Issue 6
  • DOI: 10.1063/1.3226860

High-performance Ge-on-Si photodetectors
journal, July 2010


Synthesis, assembly and applications of semiconductor nanomembranes
journal, September 2011

  • Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G.
  • Nature, Vol. 477, Issue 7362, p. 45-53
  • DOI: 10.1038/nature10381

Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures
journal, September 1993

  • Soref, Richard A.; Friedman, Lionel
  • Superlattices and Microstructures, Vol. 14, Issue 2-3
  • DOI: 10.1006/spmi.1993.1122

Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission
journal, June 2016

  • Yin, Jian; Cui, Xiaorui; Wang, Xiaowei
  • Applied Physics Letters, Vol. 108, Issue 24
  • DOI: 10.1063/1.4954188

Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy
journal, January 2011

  • Huo, Yijie; Lin, Hai; Chen, Robert
  • Applied Physics Letters, Vol. 98, Issue 1
  • DOI: 10.1063/1.3534785

Strained germanium thin film membrane on silicon substrate for optoelectronics
journal, January 2011

  • Nam, Donguk; Sukhdeo, Devanand; Roy, Arunanshu
  • Optics Express, Vol. 19, Issue 27
  • DOI: 10.1364/OE.19.025866

Grating-coupled mid-infrared light emission from tensilely strained germanium nanomembranes
journal, November 2013

  • Boztug, Cicek; Sánchez-Pérez, José R.; Yin, Jian
  • Applied Physics Letters, Vol. 103, Issue 20
  • DOI: 10.1063/1.4830377

Fabrication techniques to realize CMOS-compatible microfluidic microchannels
journal, June 2001

  • Rasmussen, A.; Gaitan, M.; Locascio, L. E.
  • Journal of Microelectromechanical Systems, Vol. 10, Issue 2
  • DOI: 10.1109/84.925785

Strain-enhanced photoluminescence from Ge direct transition
journal, May 2010

  • Cheng, T. -H.; Peng, K. -L.; Ko, C. -Y.
  • Applied Physics Letters, Vol. 96, Issue 21
  • DOI: 10.1063/1.3429085

Direct-bandgap light-emitting germanium in tensilely strained nanomembranes
journal, November 2011

  • Sanchez-Perez, J. R.; Boztug, C.; Chen, F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 47, p. 18893-18898
  • DOI: 10.1073/pnas.1107968108

Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si
journal, January 2007


Type-I Ge∕Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap
journal, August 2004

  • Menéndez, J.; Kouvetakis, J.
  • Applied Physics Letters, Vol. 85, Issue 7
  • DOI: 10.1063/1.1784032

1.9% bi-axial tensile strain in thick germanium suspended membranes fabricated in optical germanium-on-insulator substrates for laser applications
journal, November 2015

  • Gassenq, A.; Guilloy, K.; Osvaldo Dias, G.
  • Applied Physics Letters, Vol. 107, Issue 19
  • DOI: 10.1063/1.4935590

Analysis of enhanced light emission from highly strained germanium microbridges
journal, April 2013


Low-threshold optically pumped lasing in highly strained germanium nanowires
journal, November 2017


Lasing in direct-bandgap GeSn alloy grown on Si
journal, January 2015


Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L -band telecommunications
journal, February 2004

  • Cannon, Douglas D.; Liu, Jifeng; Ishikawa, Yasuhiko
  • Applied Physics Letters, Vol. 84, Issue 6
  • DOI: 10.1063/1.1645677

Extending the emission wavelength of Ge nanopillars to 225 μm using silicon nitride stressors
journal, January 2015

  • Millar, R. W.; Gallacher, K.; Samarelli, A.
  • Optics Express, Vol. 23, Issue 14
  • DOI: 10.1364/OE.23.018193

Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots
journal, January 2016

  • Chen, Yan; Zhang, Jiaxiang; Zopf, Michael
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10387

An electrically pumped germanium laser
journal, January 2012

  • Camacho-Aguilera, Rodolfo E.; Cai, Yan; Patel, Neil
  • Optics Express, Vol. 20, Issue 10
  • DOI: 10.1364/OE.20.011316

Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅p formalism
journal, January 2010

  • El Kurdi, Moustafa; Fishman, Guy; Sauvage, Sébastien
  • Journal of Applied Physics, Vol. 107, Issue 1
  • DOI: 10.1063/1.3279307

A convenient platform of tunable microlens arrays for the study of cellular responses to mechanical strains
journal, April 2011


Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys
journal, August 1996

  • Fischetti, M. V.; Laux, S. E.
  • Journal of Applied Physics, Vol. 80, Issue 4, p. 2234-2252
  • DOI: 10.1063/1.363052

Optimum strain configurations for carrier injection in near infrared Ge lasers
journal, March 2012

  • Aldaghri, O.; Ikonić, Z.; Kelsall, R. W.
  • Journal of Applied Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.3691790

Tensile Strained Germanium Nanowires Measured by Photocurrent Spectroscopy and X-ray Microdiffraction
journal, March 2015

  • Guilloy, Kevin; Pauc, Nicolas; Gassenq, Alban
  • Nano Letters, Vol. 15, Issue 4
  • DOI: 10.1021/nl5048219

Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks
journal, January 2017

  • Millar, R. W.; Dumas, D. C. S.; Gallacher, K. F.
  • Optics Express, Vol. 25, Issue 21
  • DOI: 10.1364/OE.25.025374