DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States

Abstract

Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. Here, we combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [6];  [1];  [1];  [1]
  1. Univ. of Wisconsin, Madison, WI (United States)
  2. National Center for Research in Energy and Materials (CNPEM), Campinas (Brazil). National Lab. of Nanotechnology; Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany); Univ. of Campinas (UNICAMP), Sao Paulo (Brazil). Inst. of Physics Gleb Wataghin (IPGW)
  3. Univ. of Wisconsin, Madison, WI (United States); Motorola Solutions, Inc., Chicago, IL (United States)
  4. Univ. of Wisconsin, Madison, WI (United States); Intel Corp., Hillsboro, OR (United States)
  5. Federal Univ. of Minas Gerais, Belo Horizonte (Brazil)
  6. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany)
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); First Foundation, Greenland, AK (New Zealand); USDOD National Defense Science and Engineering Graduate (NDSEG) Fellowship; Sao Paulo Research Foundation (FAPESP) (Brazil); National Council for Scientific and Technological Development (CNPq) (Brazil)
Contributing Org.:
National Center for Research in Energy and Materials (CNPEM), Sao Paulo (Brazil). National Lab. of Light Synchrotron (LNLS)
OSTI Identifier:
1460105
Grant/Contract Number:  
FG02-03ER46028; DMR-1121288; 2016/14001-7; 423962/2016-7
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 9; Journal Issue: 48; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; epitaxy; hybrid crystalline materials; interfaces; selective growth; silicon nanomembranes; strain engineering

Citation Formats

Scott, Shelley A., Deneke, Christoph, Paskiewicz, Deborah M., Ryu, Hyuk Ju, Malachias, Angelo, Baunack, Stefan, Schmidt, Oliver G., Savage, Donald E., Eriksson, Mark A., and Lagally, Max G. Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States. United States: N. p., 2017. Web. doi:10.1021/acsami.7b14291.
Scott, Shelley A., Deneke, Christoph, Paskiewicz, Deborah M., Ryu, Hyuk Ju, Malachias, Angelo, Baunack, Stefan, Schmidt, Oliver G., Savage, Donald E., Eriksson, Mark A., & Lagally, Max G. Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States. United States. https://doi.org/10.1021/acsami.7b14291
Scott, Shelley A., Deneke, Christoph, Paskiewicz, Deborah M., Ryu, Hyuk Ju, Malachias, Angelo, Baunack, Stefan, Schmidt, Oliver G., Savage, Donald E., Eriksson, Mark A., and Lagally, Max G. Sat . "Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States". United States. https://doi.org/10.1021/acsami.7b14291. https://www.osti.gov/servlets/purl/1460105.
@article{osti_1460105,
title = {Silicon Nanomembranes with Hybrid Crystal Orientations and Strain States},
author = {Scott, Shelley A. and Deneke, Christoph and Paskiewicz, Deborah M. and Ryu, Hyuk Ju and Malachias, Angelo and Baunack, Stefan and Schmidt, Oliver G. and Savage, Donald E. and Eriksson, Mark A. and Lagally, Max G.},
abstractNote = {Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. Here, we combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.},
doi = {10.1021/acsami.7b14291},
journal = {ACS Applied Materials and Interfaces},
number = 48,
volume = 9,
place = {United States},
year = {Sat Nov 11 00:00:00 EST 2017},
month = {Sat Nov 11 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors
journal, May 2007

  • Sun, Y.; Thompson, S. E.; Nishida, T.
  • Journal of Applied Physics, Vol. 101, Issue 10
  • DOI: 10.1063/1.2730561

High-mobility Si and Ge structures
journal, December 1997


Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness
journal, July 2003

  • Fischetti, M. V.; Ren, Z.; Solomon, P. M.
  • Journal of Applied Physics, Vol. 94, Issue 2
  • DOI: 10.1063/1.1585120

Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates
journal, July 2009

  • Yuan, Hao-Chih; Qin, Guoxuan; Celler, George K.
  • Applied Physics Letters, Vol. 95, Issue 4
  • DOI: 10.1063/1.3176407

Synthesis, assembly and applications of semiconductor nanomembranes
journal, September 2011

  • Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G.
  • Nature, Vol. 477, Issue 7362, p. 45-53
  • DOI: 10.1038/nature10381

Si/Ge Junctions Formed by Nanomembrane Bonding
journal, February 2011

  • Kiefer, Arnold M.; Paskiewicz, Deborah M.; Clausen, Anna M.
  • ACS Nano, Vol. 5, Issue 2, p. 1179-1189
  • DOI: 10.1021/nn103149c

Control of Three-Dimensional Island Growth with Mechanically Responsive Single-Crystal Nanomembrane Substrates
journal, June 2009


Straining Nanomembranes via Highly Mismatched Heteroepitaxial Growth: InAs Islands on Compliant Si Substrates
journal, October 2012

  • Deneke, Christoph; Malachias, Angelo; Rastelli, Armando
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn304151j

Direct evidence of strain transfer for InAs island growth on compliant Si substrates
journal, April 2015

  • Marçal, L. A. B.; Richard, M. -I.; Magalhães-Paniago, R.
  • Applied Physics Letters, Vol. 106, Issue 15
  • DOI: 10.1063/1.4918615

Fast flexible electronics with strained silicon nanomembranes
journal, February 2013

  • Zhou, Han; Seo, Jung-Hun; Paskiewicz, Deborah M.
  • Scientific Reports, Vol. 3, Article No. 1291
  • DOI: 10.1038/srep01291

Fast Flexible Transistors with a Nanotrench Structure
journal, April 2016

  • Seo, Jung-Hun; Ling, Tao; Gong, Shaoqin
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24771

Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys
journal, February 2007


Elastically relaxed free-standing strained-silicon nanomembranes
journal, April 2006

  • Roberts, Michelle M.; Klein, Levente J.; Savage, Donald E.
  • Nature Materials, Vol. 5, Issue 5, p. 388-393
  • DOI: 10.1038/nmat1606

Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces
journal, September 1971


Challenges in epitaxial growth of SiGe buffers on Si (111), (110), and (112)
journal, June 2006

  • Lee, Minjoo L.; Antoniadis, Dimitri A.; Fitzgerald, Eugene A.
  • Thin Solid Films, Vol. 508, Issue 1-2
  • DOI: 10.1016/j.tsf.2005.07.328

Symmetry in Strain Engineering of Nanomembranes: Making New Strained Materials
journal, June 2011

  • Paskiewicz, Deborah M.; Scott, Shelley A.; Savage, Donald E.
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn2009672

Reduction in Modulus of Suspended Sub-2 nm Single Crystalline Silicon Nanomembranes
journal, July 2017

  • Zhu, Xiaodong; Lu, Jiwu; Pan, Haihua
  • Advanced Materials Interfaces, Vol. 4, Issue 19
  • DOI: 10.1002/admi.201700529

Growth kinetics of Si and SiGe on Si(100), Si(110) and Si(111) surfaces
journal, September 2006


Transfer printing by kinetic control of adhesion to an elastomeric stamp
journal, December 2005

  • Meitl, Matthew A.; Zhu, Zheng-Tao; Kumar, Vipan
  • Nature Materials, Vol. 5, Issue 1, p. 33-38
  • DOI: 10.1038/nmat1532

Flexible Phototransistors Based on Single‐Crystalline Silicon Nanomembranes
journal, October 2015

  • Seo, Jung‐Hun; Zhang, Kan; Kim, Munho
  • Advanced Optical Materials, Vol. 4, Issue 1
  • DOI: 10.1002/adom.201500402

Transfer Printed Nanomembranes for Heterogeneously Integrated Membrane Photonics
journal, November 2015


Biodegradable Elastomers and Silicon Nanomembranes/Nanoribbons for Stretchable, Transient Electronics, and Biosensors
journal, April 2015

  • Hwang, Suk-Won; Lee, Chi Hwan; Cheng, Huanyu
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl503997m

Transfer print techniques for heterogeneous integration of photonic components
journal, March 2017


Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT
journal, March 2006


The kinetics of grain boundary grooving in copper
journal, March 1959


Amorphization/templated recrystallization method for changing the orientation of single-crystal silicon: An alternative approach to hybrid orientation substrates
journal, November 2005

  • Saenger, K. L.; de Souza, J. P.; Fogel, K. E.
  • Applied Physics Letters, Vol. 87, Issue 22
  • DOI: 10.1063/1.2138795

Mask-edge defects in hybrid orientation direct-Si-bonded substrates recrystallized by solid phase epitaxy after patterned amorphization
journal, April 2007

  • Saenger, K. L.; Fogel, K. E.; Ott, J. A.
  • Journal of Applied Physics, Vol. 101, Issue 8
  • DOI: 10.1063/1.2717543

High performance CMOS fabricated on hybrid substrate with different crystal orientations
conference, January 2003


Transport properties of polycrystalline silicon films
journal, November 1978

  • Baccarani, G.; Riccò, B.; Spadini, G.
  • Journal of Applied Physics, Vol. 49, Issue 11
  • DOI: 10.1063/1.324477

A conduction model for semiconductor-grain-boundary-semiconductor barriers in polycrystalline-silicon films
journal, February 1983


Structure of elastically strain-sharing silicon(110) nanomembranes
journal, August 2007


Strain relaxation kinetics in Si 1− x Ge x /Si heterostructures
journal, August 1991

  • Houghton, D. C.
  • Journal of Applied Physics, Vol. 70, Issue 4
  • DOI: 10.1063/1.349451

Facile Fabrication of Ordered Crystalline-Semiconductor Microstructures on Compliant Substrates
journal, October 2013

  • Cavallo, Francesca; Turner, Kevin T.; Lagally, Max G.
  • Advanced Functional Materials, Vol. 24, Issue 12
  • DOI: 10.1002/adfm.201303165

Wrinkled-up Nanochannel Networks: Long-Range Ordering, Scalability, and X-ray Investigation
journal, July 2008

  • Malachias, Angelo; Mei, Yongfeng; Annabattula, Ratna K.
  • ACS Nano, Vol. 2, Issue 8
  • DOI: 10.1021/nn800308p

High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers
journal, July 2006

  • Yuan, Hao-Chih; Ma, Zhenqiang; Roberts, Michelle M.
  • Journal of Applied Physics, Vol. 100, Issue 1, Article No. 013708
  • DOI: 10.1063/1.2214301

ELDISCA C# — a new version of the program for identifying electron diffraction patterns
book, September 2008


Works referencing / citing this record:

In-place bonded semiconductor membranes as compliant substrates for III–V compound devices
journal, January 2019

  • Garcia Jr., Ailton J.; Rodrigues, Leonarde N.; Covre da Silva, Saimon Filipe
  • Nanoscale, Vol. 11, Issue 8
  • DOI: 10.1039/c8nr08727j