DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites

Abstract

Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. Furthermore, this study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmittermore » sensing.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1560398
Alternate Identifier(s):
OSTI ID: 1703106
Grant/Contract Number:  
AC05-00OR22725; CNMS 2017-076; CNMS 2019-034
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 155; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Cao, Qun, Hensley, Dale K., Lavrik, Nickolay V., and Venton, B. Jill. Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites. United States: N. p., 2019. Web. doi:10.1016/j.carbon.2019.08.064.
Cao, Qun, Hensley, Dale K., Lavrik, Nickolay V., & Venton, B. Jill. Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites. United States. https://doi.org/10.1016/j.carbon.2019.08.064
Cao, Qun, Hensley, Dale K., Lavrik, Nickolay V., and Venton, B. Jill. Mon . "Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites". United States. https://doi.org/10.1016/j.carbon.2019.08.064. https://www.osti.gov/servlets/purl/1560398.
@article{osti_1560398,
title = {Carbon nanospikes have better electrochemical properties than carbon nanotubes due to greater surface roughness and defect sites},
author = {Cao, Qun and Hensley, Dale K. and Lavrik, Nickolay V. and Venton, B. Jill},
abstractNote = {Carbon nanomaterials are used to improve electrodes for neurotransmitter detection, but what properties are important for maximizing those effects? In this work, we compare a newer form of graphene, carbon nanospikes (CNSs), with carbon nanotubes (CNTs) grown on wires and carbon fibers (CFs). CNS electrodes have a short, dense, defect-filled surface that produces remarkable electrochemical properties, much better than CNTs or CFs. The CNS surface roughness is 5.5 times greater than glassy carbon, while CNTs enhance roughness only 1.8-fold. D/G ratios are higher for CNS electrodes than CNT electrodes, an indication of more defect sites. For cyclic voltammetry of dopamine and ferricyanide, CNSs have both higher currents and smaller ΔEp values than CNTs and CFs. CNS electrodes also have a very low resistance to charge transfer. With fast-scan cyclic voltammetry (FSCV), CNS electrodes have enhanced current density for dopamine and cationic neurotransmitters due to increased adsorption to edge plane sites. Furthermore, this study establishes that not all carbon nanomaterials are equally advantageous for dopamine electrochemistry, but that short, dense nanomaterials that add defect sites provide improved current and electron transfer. CNSs are simple to mass fabricate on a variety of substrates and thus could be a favorable material for neurotransmitter sensing.},
doi = {10.1016/j.carbon.2019.08.064},
journal = {Carbon},
number = C,
volume = 155,
place = {United States},
year = {Mon Aug 26 00:00:00 EDT 2019},
month = {Mon Aug 26 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry
journal, November 2008


Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods
journal, November 2016


Carbon-fiber microelectrodes for in vivo applications
journal, January 2009

  • Huffman, Megan L.; Venton, B. Jill
  • The Analyst, Vol. 134, Issue 1
  • DOI: 10.1039/B807563H

Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection
journal, January 2019

  • Cao, Qun; Puthongkham, Pumidech; Venton, B. Jill
  • Analytical Methods, Vol. 11, Issue 3
  • DOI: 10.1039/C8AY02472C

Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review
journal, August 2015


Nanomaterials based electrochemical sensors for biomedical applications
journal, January 2013

  • Chen, Aicheng; Chatterjee, Sanghamitra
  • Chemical Society Reviews, Vol. 42, Issue 12
  • DOI: 10.1039/c3cs35518g

New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite
journal, January 2006

  • Banks, Craig E.; Compton, Richard G.
  • The Analyst, Vol. 131, Issue 1
  • DOI: 10.1039/B512688F

Comparison and Reappraisal of Carbon Electrodes for the Voltammetric Detection of Dopamine
journal, December 2013

  • Patel, Anisha N.; Tan, Sze-yin; Miller, Thomas S.
  • Analytical Chemistry, Vol. 85, Issue 24
  • DOI: 10.1021/ac401969q

Growth and Electrochemical Characterization of Carbon Nanospike Thin Film Electrodes
journal, January 2014

  • Sheridan, Leah B.; Hensley, Dale K.; Lavrik, Nickolay V.
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0891409jes

Carbon nanospikes for biosensing applications
conference, July 2017

  • Shanta, Aysha S.; Al Mamun, Khandaker A.; Hensley, Dale
  • 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  • DOI: 10.1109/EMBC.2017.8036795

Carbon Nanospikes on Silicon Wafer for Amperometric Biosensing Applications
conference, July 2018

  • Shanta, Aysha S.; Shamsir, Samira; Song, Yang
  • 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  • DOI: 10.1109/EMBC.2018.8513401

Communication—Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine
journal, January 2018

  • Zestos, Alexander G.; Venton, B. Jill
  • Journal of The Electrochemical Society, Vol. 165, Issue 12
  • DOI: 10.1149/2.0111812jes

Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine
journal, January 2015

  • Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.
  • The Analyst, Vol. 140, Issue 21
  • DOI: 10.1039/C5AN01467K

High-Selectivity Electrochemical Conversion of CO 2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode
journal, September 2016


Carbon Nanospikes: Synthesis, characterization and application for high resolution AFM
journal, February 2019


Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly
journal, February 2005

  • Melechko, A. V.; Merkulov, V. I.; McKnight, T. E.
  • Journal of Applied Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.1857591

Electrochemical Sensors Based on Carbon Nanotubes
journal, December 2002


Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?
journal, March 2010

  • Yang, Wenrong; Ratinac, Kyle R.; Ringer, Simon P.
  • Angewandte Chemie International Edition, Vol. 49, Issue 12
  • DOI: 10.1002/anie.200903463

Carbon nanotube electrode for oxidation of dopamine
journal, October 1996

  • Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M.
  • Bioelectrochemistry and Bioenergetics, Vol. 41, Issue 1
  • DOI: 10.1016/0302-4598(96)05078-7

Carbon Nanotube Modified Microelectrode for Enhanced Voltammetric Detection of Dopamine in the Presence of Ascorbate
journal, March 2005

  • Ho?evar, Samo?B.; Wang, Joseph; Deo, Randhir?Prakash
  • Electroanalysis, Vol. 17, Issue 5-6
  • DOI: 10.1002/elan.200403175

Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes
journal, January 2011

  • Jacobs, Christopher B.; Vickrey, Trisha L.; Venton, B. Jill
  • The Analyst, Vol. 136, Issue 17
  • DOI: 10.1039/c0an00854k

Rapid, Sensitive Detection of Neurotransmitters at Microelectrodes Modified with Self-assembled SWCNT Forests
journal, August 2012

  • Xiao, Ning; Venton, B. Jill
  • Analytical Chemistry, Vol. 84, Issue 18
  • DOI: 10.1021/ac301445w

High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes
journal, May 2014

  • Jacobs, Christopher B.; Ivanov, Ilia N.; Nguyen, Michael D.
  • Analytical Chemistry, Vol. 86, Issue 12
  • DOI: 10.1021/ac404050t

Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters
journal, August 2014

  • Zestos, Alexander G.; Jacobs, Christopher B.; Trikantzopoulos, Elefterios
  • Analytical Chemistry, Vol. 86, Issue 17
  • DOI: 10.1021/ac5003273

Carbon Nanotube Yarn Electrodes for Enhanced Detection of Neurotransmitter Dynamics in Live Brain Tissue
journal, August 2013

  • Schmidt, Andreas C.; Wang, Xin; Zhu, Yuntian
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn402857u

Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine
journal, December 2015


Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo
journal, March 2014

  • Xiang, Ling; Yu, Ping; Hao, Jie
  • Analytical Chemistry, Vol. 86, Issue 8
  • DOI: 10.1021/ac404232h

Carbon nanotube-based neat fibers
journal, October 2008


Laser Treated Carbon Nanotube Yarn Microelectrodes for Rapid and Sensitive Detection of Dopamine in Vivo
journal, March 2016


Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond
journal, December 2017


Patternable Solvent-Processed Thermoplastic Graphite Electrodes
journal, September 2017

  • Klunder, Kevin J.; Nilsson, Zach; Sambur, Justin B.
  • Journal of the American Chemical Society, Vol. 139, Issue 36
  • DOI: 10.1021/jacs.7b06173

Advanced Carbon Electrode Materials for Molecular Electrochemistry
journal, July 2008

  • McCreery, Richard L.
  • Chemical Reviews, Vol. 108, Issue 7, p. 2646-2687
  • DOI: 10.1021/cr068076m

Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes
journal, June 1990

  • Rice, Ronald J.; Pontikos, Nicholas M.; McCreery, Richard L.
  • Journal of the American Chemical Society, Vol. 112, Issue 12
  • DOI: 10.1021/ja00168a001

Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes
journal, August 1989

  • Rice, Ronald J.; McCreery, Richard L.
  • Analytical Chemistry, Vol. 61, Issue 15
  • DOI: 10.1021/ac00190a010

Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms
journal, June 2018

  • García-Miranda Ferrari, Alejandro; Foster, Christopher; Kelly, Peter
  • Biosensors, Vol. 8, Issue 2
  • DOI: 10.3390/bios8020053

On the meaning of the diffusion layer thickness for slow electrode reactions
journal, January 2013

  • Molina, A.; González, J.; Laborda, E.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 7
  • DOI: 10.1039/c2cp43650g

Effects of redox system structure on electron-transfer kinetics at ordered graphite and glassy carbon electrodes
journal, November 1992

  • Kneten, Kristin R.; McCreery, Richard L.
  • Analytical Chemistry, Vol. 64, Issue 21
  • DOI: 10.1021/ac00045a011

Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy
journal, March 2010

  • Dresselhaus, Mildred S.; Jorio, Ado; Hofmann, Mario
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl904286r

Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon
journal, July 2001


A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode
journal, February 2007

  • Kachoosangi, Roohollah Torabi; Compton, Richard G.
  • Analytical and Bioanalytical Chemistry, Vol. 387, Issue 8
  • DOI: 10.1007/s00216-007-1129-y

Contiguous Petal-like Carbon Nanosheet Outgrowths from Graphite Fibers by Plasma CVD
journal, February 2010

  • Bhuvana, Thiruvelu; Kumar, Anurag; Sood, Aditya
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 3
  • DOI: 10.1021/am9009154

Electron Transfer Kinetics at Modified Carbon Electrode Surfaces: The Role of Specific Surface Sites
journal, September 1995

  • Chen, Piehong.; Fryling, Mark A.; McCreery, Richard L.
  • Analytical Chemistry, Vol. 67, Issue 18
  • DOI: 10.1021/ac00114a004

Control of Electron Transfer Kinetics at Glassy Carbon Electrodes by Specific Surface Modification
journal, January 1996

  • Chen, Peihong; McCreery, Richard L.
  • Analytical Chemistry, Vol. 68, Issue 22
  • DOI: 10.1021/ac960492r

The electrochemical performance of graphene modified electrodes: An analytical perspective
journal, January 2012

  • Brownson, Dale A. C.; Foster, Christopher W.; Banks, Craig E.
  • The Analyst, Vol. 137, Issue 8
  • DOI: 10.1039/c2an16279b

Recent Developments in Carbon Sensors for At-Source Electroanalysis
journal, November 2018


Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine
journal, January 2012

  • Ross, Ashley E.; Venton, B. Jill
  • The Analyst, Vol. 137, Issue 13
  • DOI: 10.1039/c2an35297d

Carbon Microelectrodes with a Renewable Surface
journal, March 2010

  • Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac902753x

Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
journal, December 2000

  • Bath, Bradley D.; Michael, Darren J.; Trafton, B. Jill
  • Analytical Chemistry, Vol. 72, Issue 24
  • DOI: 10.1021/ac000849y

3D‐Printed Carbon Electrodes for Neurotransmitter Detection
journal, October 2018

  • Yang, Cheng; Cao, Qun; Puthongkham, Pumidech
  • Angewandte Chemie International Edition, Vol. 57, Issue 43
  • DOI: 10.1002/anie.201809992