DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

Abstract

Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coated wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid comparedmore » to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.« less

Authors:
 [1];  [1];  [2];  [3];  [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. Univ. of Virginia, Charlottesville, VA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE
OSTI Identifier:
1295130
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Analyst
Additional Journal Information:
Journal Volume: 140; Journal Issue: 21; Journal ID: ISSN 0003-2654
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Zestos, Alexander G., Yang, Cheng, Jacobs, Christopher B., Hensley, Dale, and Venton, B. Jill. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. United States: N. p., 2015. Web. doi:10.1039/C5AN01467K.
Zestos, Alexander G., Yang, Cheng, Jacobs, Christopher B., Hensley, Dale, & Venton, B. Jill. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. United States. https://doi.org/10.1039/C5AN01467K
Zestos, Alexander G., Yang, Cheng, Jacobs, Christopher B., Hensley, Dale, and Venton, B. Jill. Mon . "Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine". United States. https://doi.org/10.1039/C5AN01467K. https://www.osti.gov/servlets/purl/1295130.
@article{osti_1295130,
title = {Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine},
author = {Zestos, Alexander G. and Yang, Cheng and Jacobs, Christopher B. and Hensley, Dale and Venton, B. Jill},
abstractNote = {Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coated wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.},
doi = {10.1039/C5AN01467K},
journal = {Analyst},
number = 21,
volume = 140,
place = {United States},
year = {Mon Sep 14 00:00:00 EDT 2015},
month = {Mon Sep 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry
journal, November 2008


Resolving Neurotransmitters Detected by Fast-Scan Cyclic Voltammetry
journal, October 2004

  • Heien, Michael L. A. V.; Johnson, Michael A.; Wightman, R. Mark
  • Analytical Chemistry, Vol. 76, Issue 19
  • DOI: 10.1021/ac0491509

Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes
journal, December 2006

  • Hermans, Andre; Wightman, R. Mark
  • Langmuir, Vol. 22, Issue 25
  • DOI: 10.1021/la061209e

Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo
journal, January 2007

  • Swamy, B. E. Kumara; Venton, B. Jill
  • The Analyst, Vol. 132, Issue 9
  • DOI: 10.1039/b705552h

New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite
journal, January 2006

  • Banks, Craig E.; Compton, Richard G.
  • The Analyst, Vol. 131, Issue 1
  • DOI: 10.1039/B512688F

Carbon Nanotube Yarn Electrodes for Enhanced Detection of Neurotransmitter Dynamics in Live Brain Tissue
journal, August 2013

  • Schmidt, Andreas C.; Wang, Xin; Zhu, Yuntian
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn402857u

Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes
journal, November 2008

  • Shang, Nai Gui; Papakonstantinou, Pagona; McMullan, Martin
  • Advanced Functional Materials, Vol. 18, Issue 21
  • DOI: 10.1002/adfm.200800951

Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for Electrochemical Biosensing
journal, May 2012

  • Claussen, Jonathan C.; Kumar, Anurag; Jaroch, David B.
  • Advanced Functional Materials, Vol. 22, Issue 16
  • DOI: 10.1002/adfm.201200551

A review of plasma enhanced chemical vapour deposition of carbon nanotubes
journal, October 2009


Plasma-Enhanced Chemical Vapor Deposition of Multiwalled Carbon Nanofibers
journal, October 2002

  • Matthews, Kristopher; Cruden, Brett A.; Chen, Bin
  • Journal of Nanoscience and Nanotechnology, Vol. 2, Issue 5
  • DOI: 10.1166/jnn.2002.133

Vertically Aligned Carbon Nanofiber Arrays Record Electrophysiological Signals from Hippocampal Slices
journal, August 2007

  • Yu, Zhe; McKnight, Timothy E.; Ericson, M. Nance
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl070291a

Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function
journal, May 2012

  • Yu, Zhe; McKnight, Timothy E.; Ericson, M. Nance
  • Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 8, Issue 4
  • DOI: 10.1016/j.nano.2012.02.011

Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry
journal, January 2011

  • Koehne, Jessica E.; Marsh, Michael; Boakye, Adwoa
  • The Analyst, Vol. 136, Issue 9
  • DOI: 10.1039/c1an15025a

A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbicacid
journal, April 2013


Carbon Nanofiber Electrode for Neurochemical Monitoring
journal, August 2013


Growth, structure and field emission characteristics of petal like carbon nano-structured thin films
journal, December 2005


Uniform carbon nanoflake films and their field emissions
journal, May 2002


Production of petal-like graphite sheets by hydrogen arc discharge
journal, January 1997


Growth and Electrochemical Characterization of Carbon Nanospike Thin Film Electrodes
journal, January 2014

  • Sheridan, Leah B.; Hensley, Dale K.; Lavrik, Nickolay V.
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0891409jes

Direct growth of aligned carbon nanotubes on bulk metals
journal, October 2006


Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity
journal, January 2003

  • Heien, Michael L. A. V.; Phillips, Paul E. M.; Stuber, Garret D.
  • The Analyst, Vol. 128, Issue 12, p. 1413-1419
  • DOI: 10.1039/b307024g

Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes
journal, June 2013

  • Zestos, Alexander G.; Nguyen, Michael D.; Poe, Brian L.
  • Sensors and Actuators B: Chemical, Vol. 182
  • DOI: 10.1016/j.snb.2013.03.066

Contiguous Petal-like Carbon Nanosheet Outgrowths from Graphite Fibers by Plasma CVD
journal, February 2010

  • Bhuvana, Thiruvelu; Kumar, Anurag; Sood, Aditya
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 3
  • DOI: 10.1021/am9009154

Carbon Microelectrodes with a Renewable Surface
journal, March 2010

  • Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac902753x

Noise at microelectrodes and microelectrode arrays in amperometry and voltammetry
journal, October 1988

  • Long, John T.; Weber, Stephen G.
  • Analytical Chemistry, Vol. 60, Issue 20
  • DOI: 10.1021/ac00171a032

High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes
journal, May 2014

  • Jacobs, Christopher B.; Ivanov, Ilia N.; Nguyen, Michael D.
  • Analytical Chemistry, Vol. 86, Issue 12
  • DOI: 10.1021/ac404050t

Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes
journal, January 2011

  • Jacobs, Christopher B.; Vickrey, Trisha L.; Venton, B. Jill
  • The Analyst, Vol. 136, Issue 17
  • DOI: 10.1039/c0an00854k

Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
journal, December 2000

  • Bath, Bradley D.; Michael, Darren J.; Trafton, B. Jill
  • Analytical Chemistry, Vol. 72, Issue 24
  • DOI: 10.1021/ac000849y

Electrochemical methods for ascorbic acid determination
journal, March 2014


Nanostructured Carbon Fiber Disk Electrodes for Sensitive Determinations of Adenosine and Uric Acid
journal, April 2000

  • Brajter-Toth, Anna; El-Nour, Kholoud Abou; Cavalheiro, Eder T.
  • Analytical Chemistry, Vol. 72, Issue 7
  • DOI: 10.1021/ac9906680

Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review
journal, August 2015


Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo
journal, January 2010

  • Zachek, Matthew K.; Takmakov, Pavel; Park, Jinwoo
  • Biosensors and Bioelectronics, Vol. 25, Issue 5
  • DOI: 10.1016/j.bios.2009.10.008

Critical guidelines for validation of the selectivity of in-vivo chemical microsensors
journal, September 2003


Characterization of Spontaneous, Transient Adenosine Release in the Caudate-Putamen and Prefrontal Cortex
journal, January 2014


Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation
journal, February 2006


Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth
journal, November 2010

  • Magrez, Arnaud; Seo, Jin Won; Smajda, Rita
  • Materials, Vol. 3, Issue 11
  • DOI: 10.3390/ma3114871

Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters
journal, August 2014

  • Zestos, Alexander G.; Jacobs, Christopher B.; Trikantzopoulos, Elefterios
  • Analytical Chemistry, Vol. 86, Issue 17
  • DOI: 10.1021/ac5003273

Comparison of Nafion- and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection
journal, January 2011

  • Peairs, M. Jennifer; Ross, Ashley E.; Venton, B. Jill
  • Analytical Methods, Vol. 3, Issue 10
  • DOI: 10.1039/c1ay05348e

Rapid, Sensitive Detection of Neurotransmitters at Microelectrodes Modified with Self-assembled SWCNT Forests
journal, August 2012

  • Xiao, Ning; Venton, B. Jill
  • Analytical Chemistry, Vol. 84, Issue 18
  • DOI: 10.1021/ac301445w

Carbon Nanopipette Electrodes for Dopamine Detection in Drosophila
journal, March 2015

  • Rees, Hillary R.; Anderson, Sean E.; Privman, Eve
  • Analytical Chemistry, Vol. 87, Issue 7
  • DOI: 10.1021/ac504596y

Plasma-Enhanced Chemical Vapor Deposition of Multiwalled Carbon Nanofibers
journal, October 2002

  • Matthews, Kristopher; Cruden, Brett A.; Chen, Bin
  • Journal of Nanoscience and Nanotechnology, Vol. 2, Issue 5
  • DOI: 10.1166/153348802760394025

Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes †
text, January 2006

  • Andre, Hermans,; Mark, Wightman, R.
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/e96b-gw46

Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo
text, January 2010

  • K., Zachek, Matthew; Mark, Wightman, R.; S., McCarty, Gregory
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/ff6w-k672

Carbon Microelectrodes with a Renewable Surface
text, January 2010

  • K., Zachek, Matthew; Carrie, Donley,; B., Keithley, Richard
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/dkzq-5b82

Works referencing / citing this record:

Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection
journal, January 2019

  • Cao, Qun; Puthongkham, Pumidech; Venton, B. Jill
  • Analytical Methods, Vol. 11, Issue 3
  • DOI: 10.1039/c8ay02472c

Polymer modified carbon fiber-microelectrodes and waveform modifications enhance neurotransmitter metabolite detection
journal, January 2019

  • Raju, Dilpreet; Mendoza, Alexander; Wonnenberg, Pauline
  • Analytical Methods, Vol. 11, Issue 12
  • DOI: 10.1039/c8ay02737d

Recent advances in fast-scan cyclic voltammetry
journal, January 2020

  • Puthongkham, Pumidech; Venton, B. Jill
  • The Analyst, Vol. 145, Issue 4
  • DOI: 10.1039/c9an01925a

Carbon Nanotubes, Nanofibers and Nanospikes for Electrochemical Sensing: A Review
journal, June 2017

  • Shanta, Aysha S.; Al Mamun, Khandakar A.; Islam, Syed K.
  • International Journal of High Speed Electronics and Systems, Vol. 26, Issue 03
  • DOI: 10.1142/s0129156417400080

Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters
journal, August 2018

  • Zestos, Alexander G.
  • International Journal of Electrochemistry, Vol. 2018
  • DOI: 10.1155/2018/3679627

Recent Advances in the Detection of Neurotransmitters
journal, January 2018


Carbon Nanotubes, Nanofibers and Nanospikes for Electrochemical Sensing: A Review
conference, October 2017

  • Shanta, Aysha S.; Al Mamun, Khandakar A.; Islam, Syed K.
  • The 25th Annual Symposium of Connecticut Microelectronics and Optoelectronics Consortium (CMOC 2016)
  • DOI: 10.1142/9789813232341_0003