DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes

Abstract

Carbon nanotube yarn microelectrodes (CNTYMEs) have micron-scale surface crevices that momentarily trap molecules. CNTYMEs improve selectivity among cationic catecholamines because secondary reactions are enhanced, but no anions have been studied. Here, we compared fast-scan cyclic voltammetry (FSCV) of dopamine and anionic interferents 3,4 dihydroxyphenylacetic acid (DOPAC) and L-ascorbic acid (AA) at CNTYMEs and carbon fiber microelectrodes (CFMEs). At CFMEs, dopamine current decreases with increasing FSCV repetition frequency at pH 7.4, whereas DOPAC and AA have increasing currents with increasing frequency, because of less repulsion at the negative holding potential. Both DOPAC and AA have side reactions after being oxidized, which are enhanced by trapping. At pH 4, the current increases for DOPAC and AA because they are not repelled. In addition, AA has a different oxidation pathway at pH 4, and an extra peak in the CV is enhanced by trapping effects at CNTYMEs. At pH 8.5, co-detection of dopamine in the presence of DOPAC and AA is enhanced at 100 Hz frequency because of differences in secondary peaks. Thus, the trapping effects at CNTYMEs affects anions differently than cations and secondary peaks can be used to identify dopamine in mixture of AA and DOPAC with FSCV.

Authors:
 [1]; ORCiD logo [1]
  1. University of Virginia, Charlottesville, VA (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); Owens Family Foundation; National Institutes of Health (NIH)
OSTI Identifier:
1983009
Grant/Contract Number:  
AC05-00OR22725; R01EB026497; R01MH085159
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 169; Journal Issue: 2; Journal ID: ISSN 0013-4651
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrochemistry; Materials Science

Citation Formats

Shao, Zijun, and Venton, B. Jill. Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes. United States: N. p., 2022. Web. doi:10.1149/1945-7111/ac4d67.
Shao, Zijun, & Venton, B. Jill. Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes. United States. https://doi.org/10.1149/1945-7111/ac4d67
Shao, Zijun, and Venton, B. Jill. Tue . "Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes". United States. https://doi.org/10.1149/1945-7111/ac4d67. https://www.osti.gov/servlets/purl/1983009.
@article{osti_1983009,
title = {Different Electrochemical Behavior of Cationic Dopamine from Anionic Ascorbic Acid and DOPAC at CNT Yarn Microelectrodes},
author = {Shao, Zijun and Venton, B. Jill},
abstractNote = {Carbon nanotube yarn microelectrodes (CNTYMEs) have micron-scale surface crevices that momentarily trap molecules. CNTYMEs improve selectivity among cationic catecholamines because secondary reactions are enhanced, but no anions have been studied. Here, we compared fast-scan cyclic voltammetry (FSCV) of dopamine and anionic interferents 3,4 dihydroxyphenylacetic acid (DOPAC) and L-ascorbic acid (AA) at CNTYMEs and carbon fiber microelectrodes (CFMEs). At CFMEs, dopamine current decreases with increasing FSCV repetition frequency at pH 7.4, whereas DOPAC and AA have increasing currents with increasing frequency, because of less repulsion at the negative holding potential. Both DOPAC and AA have side reactions after being oxidized, which are enhanced by trapping. At pH 4, the current increases for DOPAC and AA because they are not repelled. In addition, AA has a different oxidation pathway at pH 4, and an extra peak in the CV is enhanced by trapping effects at CNTYMEs. At pH 8.5, co-detection of dopamine in the presence of DOPAC and AA is enhanced at 100 Hz frequency because of differences in secondary peaks. Thus, the trapping effects at CNTYMEs affects anions differently than cations and secondary peaks can be used to identify dopamine in mixture of AA and DOPAC with FSCV.},
doi = {10.1149/1945-7111/ac4d67},
journal = {Journal of the Electrochemical Society},
number = 2,
volume = 169,
place = {United States},
year = {Tue Feb 01 00:00:00 EST 2022},
month = {Tue Feb 01 00:00:00 EST 2022}
}

Works referenced in this record:

Mechanism of Histamine Oxidation and Electropolymerization at Carbon Electrodes
journal, June 2019


Electrochemical dopamine detection: Comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry
journal, March 2008

  • Zachek, Matthew K.; Hermans, Andre; Wightman, R. Mark
  • Journal of Electroanalytical Chemistry, Vol. 614, Issue 1-2
  • DOI: 10.1016/j.jelechem.2007.11.007

Cavity Carbon-Nanopipette Electrodes for Dopamine Detection
journal, February 2019


Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry
journal, December 2018


Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode
journal, December 2006

  • Safavi, Afsaneh; Maleki, Norouz; Moradlou, Omran
  • Analytical Biochemistry, Vol. 359, Issue 2
  • DOI: 10.1016/j.ab.2006.09.008

Influence of Geometry on Thin Layer and Diffusion Processes at Carbon Electrodes
journal, February 2021


Fundamentals of fast-scan cyclic voltammetry for dopamine detection
journal, January 2020


Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
journal, December 2000

  • Bath, Bradley D.; Michael, Darren J.; Trafton, B. Jill
  • Analytical Chemistry, Vol. 72, Issue 24
  • DOI: 10.1021/ac000849y

Biocompatible PEDOT:Nafion Composite Electrode Coatings for Selective Detection of Neurotransmitters in Vivo
journal, February 2015

  • Vreeland, Richard F.; Atcherley, Christopher W.; Russell, Wilfred S.
  • Analytical Chemistry, Vol. 87, Issue 5
  • DOI: 10.1021/ac502165f

Spinning yarn from long carbon nanotube arrays
journal, February 2011

  • Jayasinghe, Chaminda; Chakrabarti, Supriya; Schulz, Mark J.
  • Journal of Materials Research, Vol. 26, Issue 5
  • DOI: 10.1557/jmr.2010.91

Response Times of Carbon Fiber Microelectrodes to Dynamic Changes in Catecholamine Concentration
journal, February 2002

  • Venton, B. Jill; Troyer, Kevin P.; Wightman, R. Mark
  • Analytical Chemistry, Vol. 74, Issue 3
  • DOI: 10.1021/ac010819a

Resolving Neurotransmitters Detected by Fast-Scan Cyclic Voltammetry
journal, October 2004

  • Heien, Michael L. A. V.; Johnson, Michael A.; Wightman, R. Mark
  • Analytical Chemistry, Vol. 76, Issue 19
  • DOI: 10.1021/ac0491509

O 2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties
journal, April 2017


Fast-scan voltammetry of biogenic amines
journal, July 1988

  • Baur, John E.; Kristensen, Eric W.; May, Leslie J.
  • Analytical Chemistry, Vol. 60, Issue 13
  • DOI: 10.1021/ac00164a006

Oxidation of L-ascorbic acid on a gold electrode
journal, May 1978


Adsorption of catechols on fractured glassy carbon electrode surfaces
journal, February 1992

  • Allred, Christie D.; McCreery, Richard L.
  • Analytical Chemistry, Vol. 64, Issue 4
  • DOI: 10.1021/ac00028a020

Currents in thin layer electrochemical cells with spherical and conical electrodes
journal, December 1987

  • Davis, Joe M.; Fan, F. -R. F.; Bard, A. J.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 238, Issue 1-2
  • DOI: 10.1016/0022-0728(87)85163-X

Regulation of embryonic neurotransmitter and tyrosine hydroxylase protein levels by ascorbic acid
journal, November 2013


Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review
journal, November 2016


Nafion-coated electrodes with high selectivity for CNS electrochemistry
journal, January 1984


Mechanistic insights into the electrochemical oxidation of dopamine by cyclic voltammetry
journal, March 2019


Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward
journal, November 2015

  • Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1513619112

Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review
journal, August 2015


Covalent modification of carbon electrodes for voltammetric differentiation of dopamine and ascorbic acid
journal, December 1995

  • Downard, Alison J.; Roddick, Alisa D.; Bond, Alan M.
  • Analytica Chimica Acta, Vol. 317, Issue 1-3, p. 303-310
  • DOI: 10.1016/0003-2670(95)00397-5

Mechanism of L-ascorbic acid oxidation and dehydro-L-ascorbic acid reduction on a mercury electrode. I. Acid medium
journal, August 1977

  • Ruiz, Juan José; Aldaz, Antonio; Dominguez, Manuel
  • Canadian Journal of Chemistry, Vol. 55, Issue 15
  • DOI: 10.1139/v77-389

Spinning Carbon Nanotube Nanothread under a Scanning Electron Microscope
journal, August 2011

  • Li, Weifeng; Jayasinghe, Chaminda; Shanov, Vesselin
  • Materials, Vol. 4, Issue 9
  • DOI: 10.3390/ma4091519

Mechanism of L-ascorbic acid oxidation on a mercury electrode. II. Basic medium
journal, June 1978

  • Ruiz, Juan José; Aldaz, Antonio; Dominguez, Manuel
  • Canadian Journal of Chemistry, Vol. 56, Issue 11
  • DOI: 10.1139/v78-248

Advanced Carbon Electrode Materials for Molecular Electrochemistry
journal, July 2008

  • McCreery, Richard L.
  • Chemical Reviews, Vol. 108, Issue 7, p. 2646-2687
  • DOI: 10.1021/cr068076m

Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry
journal, November 2008


Electrochemical detection of neurotransmitters: Toward synapse-based neural interfaces
journal, August 2016

  • Jeon, Joohee; Hwang, Inseong; Chung, Taek Dong
  • Biomedical Engineering Letters, Vol. 6, Issue 3
  • DOI: 10.1007/s13534-016-0230-6

Multiwalled Carbon Nanotubes/Nanofibrillar Cellulose/Nafion Composite-Modified Tetrahedral Amorphous Carbon Electrodes for Selective Dopamine Detection
journal, September 2019

  • Durairaj, Vasuki; Wester, Niklas; Etula, Jarkko
  • The Journal of Physical Chemistry C, Vol. 123, Issue 40
  • DOI: 10.1021/acs.jpcc.9b05537

Psychoanalytical Electrochemistry: Dopamine and Behavior
journal, October 2003

  • Venton, B. Jill; Wightman, R. Mark
  • Analytical Chemistry, Vol. 75, Issue 19
  • DOI: 10.1021/ac031421c

High performance, low cost carbon nanotube yarn based 3D printed electrodes compatible with a conventional screen printed electrode system
conference, May 2017

  • Yang, Cheng; Venton, B. Jill
  • 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
  • DOI: 10.1109/MeMeA.2017.7985857

Carbon Nanotube Yarn Electrodes for Enhanced Detection of Neurotransmitter Dynamics in Live Brain Tissue
journal, August 2013

  • Schmidt, Andreas C.; Wang, Xin; Zhu, Yuntian
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn402857u

Laser Treated Carbon Nanotube Yarn Microelectrodes for Rapid and Sensitive Detection of Dopamine in Vivo
journal, March 2016


Regional distribution of ascorbate and 3,4-dihydroxyphenylacetic acid (DOPAC) in rat striatum
journal, January 1991


Carbon-fiber microelectrodes for in vivo applications
journal, January 2009

  • Huffman, Megan L.; Venton, B. Jill
  • The Analyst, Vol. 134, Issue 1
  • DOI: 10.1039/B807563H

Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH
journal, January 2020

  • Bacil, Raphael P.; Chen, Lifu; Serrano, Silvia H. P.
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 2
  • DOI: 10.1039/C9CP05527D

Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes
journal, June 1986

  • Deakin, Mark R.; Kovach, Paul M.; Stutts, K. J.
  • Analytical Chemistry, Vol. 58, Issue 7
  • DOI: 10.1021/ac00298a046

Electrochemical methods for ascorbic acid determination
journal, March 2014


Anodic oxidation pathways of aromatic hydrocarbons and amines
journal, June 1969


Thin layer cell behavior of CNT yarn and cavity carbon nanopipette electrodes: Effect on catecholamine detection
journal, November 2020


Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties
journal, May 2017

  • Yang, Cheng; Trikantzopoulos, Elefterios; Jacobs, Christopher B.
  • Analytica Chimica Acta, Vol. 965
  • DOI: 10.1016/j.aca.2017.01.039