DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm–2

Abstract

High-conductivity solid electrolytes, such as the Na superionic conductor, NaSICON, are poised to play an increasingly important role in safe, reliable battery-based energy storage, enabling advanced sodium-based batteries. Coupled demands of increased current density (≥0.1 A cm–2) and low-temperature (<200 °C) operation, combined with increased discharge times for long-duration storage (>12 h), challenge the limitations of solid electrolytes. Here, we explore the penetration of molten sodium into NaSICON at high current densities. Previous studies of β"-alumina proposed that Poiseuille pressure-driven cracking (mode I) and recombination of ions and electrons within the solid electrolyte (mode II) are the two main mechanisms for Na penetration, but a comprehensive study of Na penetration in NaSICON is necessary, particularly at high current density. To further understand these modes, this work employs unidirectional galvanostatic testing of Na|NaSICON|Na symmetric cells at 0.1 A cm–2 over 23 h at 110 °C. Further, while galvanostatic testing shows a relatively constant yet increasingly noisy voltage profile, electrochemical impedance spectroscopy (EIS) reveals a significant decrease in cell impedance correlated with significant sodium penetration, as observed in scanning electron microscopy (SEM). Further SEM analysis of sodium accumulation within NaSICON suggests that mode II failure may be far more prevalent than previouslymore » considered. Further, these findings suggest that total (dis)charge density (mAh cm–2), as opposed to current density (mA cm–2), may be a more critical parameter when examining solid electrolyte failure, highlighting the challenge of achieving long discharge times in batteries using solid electrolytes. Together, these results provide a better understanding of the limitations of NaSICON solid electrolytes under high current and emphasize the need for improved electrode–electrolyte interfaces.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Kentucky, Lexington, KY (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
2311652
Report Number(s):
SAND-2023-13025J
Journal ID: ISSN 2574-0962
Grant/Contract Number:  
NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Energy Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 4; Journal ID: ISSN 2574-0962
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodium batteries; solid electrolytes; dendrites; NaSICON; electrochemistry

Citation Formats

Hill, Ryan, Peretti, Amanda Sheree, Small, Leo J., Spoerke, Erik David, and Cheng, Yang-Tse. Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm–2. United States: N. p., 2023. Web. doi:10.1021/acsaem.2c03944.
Hill, Ryan, Peretti, Amanda Sheree, Small, Leo J., Spoerke, Erik David, & Cheng, Yang-Tse. Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm–2. United States. https://doi.org/10.1021/acsaem.2c03944
Hill, Ryan, Peretti, Amanda Sheree, Small, Leo J., Spoerke, Erik David, and Cheng, Yang-Tse. Mon . "Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm–2". United States. https://doi.org/10.1021/acsaem.2c03944. https://www.osti.gov/servlets/purl/2311652.
@article{osti_2311652,
title = {Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm–2},
author = {Hill, Ryan and Peretti, Amanda Sheree and Small, Leo J. and Spoerke, Erik David and Cheng, Yang-Tse},
abstractNote = {High-conductivity solid electrolytes, such as the Na superionic conductor, NaSICON, are poised to play an increasingly important role in safe, reliable battery-based energy storage, enabling advanced sodium-based batteries. Coupled demands of increased current density (≥0.1 A cm–2) and low-temperature (<200 °C) operation, combined with increased discharge times for long-duration storage (>12 h), challenge the limitations of solid electrolytes. Here, we explore the penetration of molten sodium into NaSICON at high current densities. Previous studies of β"-alumina proposed that Poiseuille pressure-driven cracking (mode I) and recombination of ions and electrons within the solid electrolyte (mode II) are the two main mechanisms for Na penetration, but a comprehensive study of Na penetration in NaSICON is necessary, particularly at high current density. To further understand these modes, this work employs unidirectional galvanostatic testing of Na|NaSICON|Na symmetric cells at 0.1 A cm–2 over 23 h at 110 °C. Further, while galvanostatic testing shows a relatively constant yet increasingly noisy voltage profile, electrochemical impedance spectroscopy (EIS) reveals a significant decrease in cell impedance correlated with significant sodium penetration, as observed in scanning electron microscopy (SEM). Further SEM analysis of sodium accumulation within NaSICON suggests that mode II failure may be far more prevalent than previously considered. Further, these findings suggest that total (dis)charge density (mAh cm–2), as opposed to current density (mA cm–2), may be a more critical parameter when examining solid electrolyte failure, highlighting the challenge of achieving long discharge times in batteries using solid electrolytes. Together, these results provide a better understanding of the limitations of NaSICON solid electrolytes under high current and emphasize the need for improved electrode–electrolyte interfaces.},
doi = {10.1021/acsaem.2c03944},
journal = {ACS Applied Energy Materials},
number = 4,
volume = 6,
place = {United States},
year = {Mon Feb 13 00:00:00 EST 2023},
month = {Mon Feb 13 00:00:00 EST 2023}
}

Works referenced in this record:

A review on recent approaches for designing the SEI layer on sodium metal anodes
journal, January 2020

  • Lee, Jisung; Kim, Jinuk; Kim, Seongseop
  • Materials Advances, Vol. 1, Issue 9
  • DOI: 10.1039/D0MA00695E

Fast Na+-ion transport in skeleton structures
journal, February 1976


NaSICON: A promising solid electrolyte for solid‐state sodium batteries
journal, July 2022

  • Li, Chi; Li, Rui; Liu, Kaining
  • Interdisciplinary Materials, Vol. 1, Issue 3
  • DOI: 10.1002/idm2.12044

A Highly Reversible Room-Temperature Sodium Metal Anode
journal, November 2015


The failure of beta-alumina electrolyte by a dendritic penetration mechanism
journal, May 1980


Sodium Ion Diffusion in Nasicon (Na 3 Zr 2 Si 2 PO 12 ) Solid Electrolytes: Effects of Excess Sodium
journal, October 2016

  • Park, Heetaek; Jung, Keeyoung; Nezafati, Marjan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b09992

Conductivity measurements on nasicon and nasicon-modified materials
journal, July 1999


In situ observation of solid electrolyte interphase evolution in a lithium metal battery
journal, November 2019

  • Golozar, Maryam; Paolella, Andrea; Demers, Hendrix
  • Communications Chemistry, Vol. 2, Issue 1
  • DOI: 10.1038/s42004-019-0234-0

Direct observation of lithium metal dendrites with ceramic solid electrolyte
journal, October 2020


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Next generation molten NaI batteries for grid scale energy storage
journal, August 2017


Electrical Resistivity of Liquid Sodium, Liquid Lithium, and Dilute Liquid Sodium Solutions
journal, March 1961

  • Freedman, J. F.; Robertson, W. D.
  • The Journal of Chemical Physics, Vol. 34, Issue 3
  • DOI: 10.1063/1.1731673

Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density
journal, February 2016

  • Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10683

Failure modes of Na-beta alumina
journal, October 1981


Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes
journal, October 2018

  • Yu, Seungho; Siegel, Donald J.
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 44
  • DOI: 10.1021/acsami.8b17223

β-Alumina electrolytes
journal, January 1972


Temperature dependence of the a.c. conductivity of Naβ-alumina
journal, November 1982


Na3Zr2Si2PO12 solid-state electrolyte with glass-like morphology for enhanced dendrite suppression
journal, September 2022


Low-Temperature Molten Sodium Batteries
journal, November 2020

  • Gross, Martha M.; Percival, Stephen J.; Small, Leo J.
  • ACS Applied Energy Materials, Vol. 3, Issue 11
  • DOI: 10.1021/acsaem.0c02385

Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries
journal, November 2016


Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal
journal, January 2017

  • Aguesse, Frederic; Manalastas, William; Buannic, Lucienne
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 4
  • DOI: 10.1021/acsami.6b13925

Grain Boundary Design of Solid Electrolyte Actualizing Stable All‐Solid‐State Sodium Batteries
journal, September 2021


Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells
journal, July 2019

  • Kasemchainan, Jitti; Zekoll, Stefanie; Spencer Jolly, Dominic
  • Nature Materials, Vol. 18, Issue 10
  • DOI: 10.1038/s41563-019-0438-9

Slow degradation and electron conduction in sodium/beta-aluminas
journal, March 1981

  • De Jonghe, Lutgard C.; Feldman, Leslie; Beuchele, Andrew
  • Journal of Materials Science, Vol. 16, Issue 3
  • DOI: 10.1007/BF02402796

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Electrochemistry of the NaI-AlCl 3 Molten Salt System for Use as Catholyte in Sodium Metal Batteries
journal, January 2018

  • Percival, Stephen J.; Small, Leo J.; Spoerke, Erik D.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.1191814jes

Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte
journal, December 2015


Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies
journal, February 2021

  • Lu, Yang; Zhao, Chen‐Zi; Yuan, Hong
  • Advanced Functional Materials, Vol. 31, Issue 18
  • DOI: 10.1002/adfm.202009925

Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention
journal, April 2016

  • Tsai, Chih-Long; Roddatis, Vladimir; Chandran, C. Vinod
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 16
  • DOI: 10.1021/acsami.6b00831

Interfacial-engineering-enabled practical low-temperature sodium metal battery
journal, December 2021


The sodium/nickel chloride (ZEBRA) battery
journal, November 2001


Wetting characteristics of sodium on ??-alumina and on nasicon
journal, March 1982

  • Viswanathan, L.; Virkar, A. V.
  • Journal of Materials Science, Vol. 17, Issue 3
  • DOI: 10.1007/BF00540372

Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
journal, May 2022

  • Li, Minyuan M.; Tripathi, Shalini; Polikarpov, Evgueni
  • ACS Applied Materials & Interfaces, Vol. 14, Issue 22
  • DOI: 10.1021/acsami.2c05245

The breakdown of β-alumina ceramic electrolyte
journal, May 1974


Sodium-based batteries: from critical materials to battery systems
journal, January 2019

  • Li, Fang; Wei, Zengxi; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/c8ta11999f

Controlling Dendrite Growth in Solid-State Electrolytes
journal, February 2020


Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes
journal, May 2021

  • Zhang, Qiangqiang; Lu, Yaxiang; Guo, Weichang
  • Energy Material Advances, Vol. 2021
  • DOI: 10.34133/2021/9870879

Designing solid-liquid interphases for sodium batteries
journal, October 2017


Decorating β′′-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures
journal, January 2018

  • Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.
  • Journal of Materials Chemistry A, Vol. 6, Issue 40
  • DOI: 10.1039/C8TA06745G

Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography
journal, March 2018


Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts
journal, September 2016

  • Zhang, Xiaowei; Sahraei, Elham; Wang, Kai
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32578

Rechargeable Sodium All-Solid-State Battery
journal, January 2017


A high-voltage, low-temperature molten sodium battery enabled by metal halide catholyte chemistry
journal, July 2021

  • Gross, Martha M.; Percival, Stephen J.; Lee, Rose Y.
  • Cell Reports Physical Science, Vol. 2, Issue 7
  • DOI: 10.1016/j.xcrp.2021.100489