DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Sat Jan 04 00:00:00 EST 2025

Title: Can a Coating Mitigate Molten Na Dendrite Growth in NaSICON Under High Current Density?

Abstract

Alkali metals are among the most desirable negative electrodes for long duration energy storage due to their extremely high capacities. Currently, only high-temperature (>250 °C) batteries have successfully used alkali electrodes in commercial applications, due to limitations imposed by solid electrolytes, such as low conductivity at moderate temperatures and susceptibility to dendrites. Toward enabling the next generation of grid-scale, long duration batteries, we aim to develop molten sodium (Na) systems that operate with commercially attractive performance metrics including high current density (>100 mA cm–2), low temperature (<200 °C), and long discharge times (>12 h). In this work, we focus on the performance of NaSICON solid electrolytes in sodium symmetric cells at 110 °C. Specifically, we use a tin (Sn) coating on NaSICON to reduce interfacial resistance by a factor of 10, enabling molten Na symmetric cell operation with “discharge” durations up to 23 h at 100 mA cm–2 and 110 °C. Unidirectional galvanostatic testing shows a 70% overpotential reduction, and electrochemical impedance spectroscopy (EIS) highlights the reduction in interfacial resistance due to the Sn coating. Detailed scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) show that Sn-coated NaSICON enables current densities of up to 500 mA cm–2 at 110 °Cmore » by suppressing dendrite formation at the plating interface (Mode I). In conclusion, this analysis also provides a mechanistic understanding of dendrite formation at current densities up to 1000 mA cm–2, highlighting the importance of effective coatings that will enable advanced battery technologies for long-term energy storage.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Kentucky, Lexington, KY (United States)
  2. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
2311326
Report Number(s):
SAND-2024-00822J
Journal ID: ISSN 2574-0962
Grant/Contract Number:  
NA0003525
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Energy Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 2; Journal ID: ISSN 2574-0962
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodium batteries; solid electrolyte; Sn coating; dendrite; critical current density

Citation Formats

Hill, Ryan C., Peretti, Amanda S., Maraschky, Adam M., Small, Leo J., Spoerke, Erik D., and Cheng, Yang-Tse. Can a Coating Mitigate Molten Na Dendrite Growth in NaSICON Under High Current Density?. United States: N. p., 2024. Web. doi:10.1021/acsaem.3c02994.
Hill, Ryan C., Peretti, Amanda S., Maraschky, Adam M., Small, Leo J., Spoerke, Erik D., & Cheng, Yang-Tse. Can a Coating Mitigate Molten Na Dendrite Growth in NaSICON Under High Current Density?. United States. https://doi.org/10.1021/acsaem.3c02994
Hill, Ryan C., Peretti, Amanda S., Maraschky, Adam M., Small, Leo J., Spoerke, Erik D., and Cheng, Yang-Tse. Thu . "Can a Coating Mitigate Molten Na Dendrite Growth in NaSICON Under High Current Density?". United States. https://doi.org/10.1021/acsaem.3c02994.
@article{osti_2311326,
title = {Can a Coating Mitigate Molten Na Dendrite Growth in NaSICON Under High Current Density?},
author = {Hill, Ryan C. and Peretti, Amanda S. and Maraschky, Adam M. and Small, Leo J. and Spoerke, Erik D. and Cheng, Yang-Tse},
abstractNote = {Alkali metals are among the most desirable negative electrodes for long duration energy storage due to their extremely high capacities. Currently, only high-temperature (>250 °C) batteries have successfully used alkali electrodes in commercial applications, due to limitations imposed by solid electrolytes, such as low conductivity at moderate temperatures and susceptibility to dendrites. Toward enabling the next generation of grid-scale, long duration batteries, we aim to develop molten sodium (Na) systems that operate with commercially attractive performance metrics including high current density (>100 mA cm–2), low temperature (<200 °C), and long discharge times (>12 h). In this work, we focus on the performance of NaSICON solid electrolytes in sodium symmetric cells at 110 °C. Specifically, we use a tin (Sn) coating on NaSICON to reduce interfacial resistance by a factor of 10, enabling molten Na symmetric cell operation with “discharge” durations up to 23 h at 100 mA cm–2 and 110 °C. Unidirectional galvanostatic testing shows a 70% overpotential reduction, and electrochemical impedance spectroscopy (EIS) highlights the reduction in interfacial resistance due to the Sn coating. Detailed scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) show that Sn-coated NaSICON enables current densities of up to 500 mA cm–2 at 110 °C by suppressing dendrite formation at the plating interface (Mode I). In conclusion, this analysis also provides a mechanistic understanding of dendrite formation at current densities up to 1000 mA cm–2, highlighting the importance of effective coatings that will enable advanced battery technologies for long-term energy storage.},
doi = {10.1021/acsaem.3c02994},
journal = {ACS Applied Energy Materials},
number = 2,
volume = 7,
place = {United States},
year = {Thu Jan 04 00:00:00 EST 2024},
month = {Thu Jan 04 00:00:00 EST 2024}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 4, 2025
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Unlocking the NaCl-AlCl3 phase diagram for low-cost, long-duration Na-Al batteries
journal, February 2023


Fast Na+-ion transport in skeleton structures
journal, February 1976


Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000 mA/cm2
journal, December 2020


A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte
journal, July 2019


Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance
journal, December 2020


Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications
journal, October 2013


Tin-based ionic chaperone phases to improve low temperature molten sodium–NaSICON interfaces
journal, January 2020

  • Gross, Martha M.; Small, Leo J.; Peretti, Amanda S.
  • Journal of Materials Chemistry A, Vol. 8, Issue 33
  • DOI: 10.1039/D0TA03571H

Regulating Li deposition at artificial solid electrolyte interphases
journal, January 2017

  • Fan, Lei; Zhuang, Houlong L.; Gao, Lina
  • Journal of Materials Chemistry A, Vol. 5, Issue 7
  • DOI: 10.1039/C6TA10204B

Bismuth Islands for Low-Temperature Sodium-Beta Alumina Batteries
journal, December 2018

  • Jin, Dana; Choi, Sangjin; Jang, Woosun
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 3
  • DOI: 10.1021/acsami.8b13954

Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage
journal, August 2014

  • Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5578

A Model for Degradation of Ceramic Electrolytes in Na-S Batteries
journal, January 1975


A social cost benefit analysis of grid-scale electrical energy storage projects: A case study
journal, February 2018


NaSICON: A promising solid electrolyte for solid‐state sodium batteries
journal, July 2022

  • Li, Chi; Li, Rui; Liu, Kaining
  • Interdisciplinary Materials, Vol. 1, Issue 3
  • DOI: 10.1002/idm2.12044

Forecast of Electric Vehicle Sales in the World and China Based on PCA-GRNN
journal, February 2022


Low-cost shape-control synthesis of porous carbon film on β″-alumina ceramics for Na-based battery application
journal, December 2012


The failure of beta-alumina electrolyte by a dendritic penetration mechanism
journal, May 1980


A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries
journal, January 2020

  • Zhang, Dechao; Xu, Xijun; Huang, Xinyue
  • Journal of Materials Chemistry A, Vol. 8, Issue 35
  • DOI: 10.1039/D0TA06697D

Review of transition paths for coal-fired power plants
journal, August 2021


A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid
journal, December 2011


Sodium-Metal Halide and Sodium-Air Batteries
journal, June 2014


Sodiated carbon: a reversible anode for sodium–oxygen batteries and route for the chemical synthesis of sodium superoxide (NaO 2 )
journal, January 2015

  • Bender, Conrad L.; Jache, Birte; Adelhelm, Philipp
  • Journal of Materials Chemistry A, Vol. 3, Issue 41
  • DOI: 10.1039/C5TA06640A

Electrochemical energy storage in a sustainable modern society
journal, January 2014


Direct observation of lithium metal dendrites with ceramic solid electrolyte
journal, October 2020


Electrochemical and compositional characterization of solid interphase layers in an interface-modified solid-state Li–sulfur battery
journal, January 2020

  • Pervez, Syed Atif; Vinayan, Bhaghavathi P.; Cambaz, Musa Ali
  • Journal of Materials Chemistry A, Vol. 8, Issue 32
  • DOI: 10.1039/D0TA05014H

Design of wind and solar energy supply, to match energy demand
journal, February 2022


Sodium-Sulfur Batteries with a Polymer-Coated NASICON-type Sodium-Ion Solid Electrolyte
journal, August 2019


Next generation molten NaI batteries for grid scale energy storage
journal, August 2017


Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density
journal, February 2016

  • Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10683

Failure modes of Na-beta alumina
journal, October 1981


A thermodynamically stable quasi-liquid interface for dendrite-free sodium metal anodes
journal, January 2020

  • Zhang, Qi; Hu, Min; He, Jia
  • Journal of Materials Chemistry A, Vol. 8, Issue 14
  • DOI: 10.1039/D0TA02016H

Low-Temperature Molten Sodium Batteries
journal, November 2020

  • Gross, Martha M.; Percival, Stephen J.; Small, Leo J.
  • ACS Applied Energy Materials, Vol. 3, Issue 11
  • DOI: 10.1021/acsaem.0c02385

Impact of Catholyte Lewis Acidity at the Molten Salt–NaSICON Interface in Low-Temperature Molten Sodium Batteries
journal, January 2023

  • Maraschky, Adam M.; Meyerson, Melissa L.; Percival, Stephen J.
  • The Journal of Physical Chemistry C, Vol. 127, Issue 3
  • DOI: 10.1021/acs.jpcc.2c06240

Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells
journal, July 2019

  • Kasemchainan, Jitti; Zekoll, Stefanie; Spencer Jolly, Dominic
  • Nature Materials, Vol. 18, Issue 10
  • DOI: 10.1038/s41563-019-0438-9

Slow degradation and electron conduction in sodium/beta-aluminas
journal, March 1981

  • De Jonghe, Lutgard C.; Feldman, Leslie; Beuchele, Andrew
  • Journal of Materials Science, Vol. 16, Issue 3
  • DOI: 10.1007/BF02402796

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


In-situ visualization of lithium plating in all-solid-state lithium-metal battery
journal, September 2019


Electrochemistry of the NaI-AlCl 3 Molten Salt System for Use as Catholyte in Sodium Metal Batteries
journal, January 2018

  • Percival, Stephen J.; Small, Leo J.; Spoerke, Erik D.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.1191814jes

Porous iron oxide coating on β″-alumina ceramics for Na-based batteries
journal, September 2014


Interfacial-engineering-enabled practical low-temperature sodium metal battery
journal, December 2021


The sodium/nickel chloride (ZEBRA) battery
journal, November 2001


Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
journal, May 2022

  • Li, Minyuan M.; Tripathi, Shalini; Polikarpov, Evgueni
  • ACS Applied Materials & Interfaces, Vol. 14, Issue 22
  • DOI: 10.1021/acsami.2c05245

The breakdown of β-alumina ceramic electrolyte
journal, May 1974


Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage
journal, January 2018

  • Gür, Turgut M.
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/C8EE01419A

Climatic impacts on energy consumption: Intensive and extensive margins
journal, March 2018


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Formation of Zintl Ions and Their Configurational Change during Sodiation in Na–Sn Battery
journal, January 2017


Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes
journal, May 2021

  • Zhang, Qiangqiang; Lu, Yaxiang; Guo, Weichang
  • Energy Material Advances, Vol. 2021
  • DOI: 10.34133/2021/9870879

Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition
journal, August 2018

  • Liu, Yulong; Sun, Qian; Zhao, Yang
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 37
  • DOI: 10.1021/acsami.8b06366

Molten Sodium Batteries
book, March 2021


Study of a Beta-Alumina Electrolyte for Sodium-Sulfur Battery
journal, January 1973

  • Folly, Jacques; Lasne, Claude; von Lazennec, Y.
  • Journal of The Electrochemical Society, Vol. 120, Issue 10
  • DOI: 10.1149/1.2403250

Decorating β′′-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures
journal, January 2018

  • Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.
  • Journal of Materials Chemistry A, Vol. 6, Issue 40
  • DOI: 10.1039/C8TA06745G

Increased energy use for adaptation significantly impacts mitigation pathways
journal, August 2022

  • Colelli, Francesco Pietro; Emmerling, Johannes; Marangoni, Giacomo
  • Nature Communications, Vol. 13, Issue 1
  • DOI: 10.1038/s41467-022-32471-1

Molten Sodium Penetration in NaSICON Electrolytes at 0.1 A cm–2
journal, February 2023

  • Hill, Ryan; Peretti, Amanda; Small, Leo J.
  • ACS Applied Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1021/acsaem.2c03944

Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes
journal, July 2017

  • Porz, Lukas; Swamy, Tushar; Sheldon, Brian W.
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701003

A high-voltage, low-temperature molten sodium battery enabled by metal halide catholyte chemistry
journal, July 2021

  • Gross, Martha M.; Percival, Stephen J.; Lee, Rose Y.
  • Cell Reports Physical Science, Vol. 2, Issue 7
  • DOI: 10.1016/j.xcrp.2021.100489

Ultrahigh Areal Capacity Li Electrodeposition at Metal–Solid Electrolyte Interfaces under Minimal Stack Pressures Enabled by Interfacial Na–K Liquids
journal, July 2023

  • Park, Richard J. -Y.; Fincher, Cole D.; Badel, Andres F.
  • ACS Applied Materials & Interfaces, Vol. 15, Issue 30
  • DOI: 10.1021/acsami.3c04297

Statistical Theory for Predicting the Failure of Brittle Materials
journal, March 1991

  • She, S.; Landes, J. D.; Boulet, J. A. M.
  • Journal of Applied Mechanics, Vol. 58, Issue 1
  • DOI: 10.1115/1.2897177