DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PbI2 Nanocrystal Growth by Atomic Layer Deposition from Pb(tmhd)2 and HI

Abstract

Atomic layer deposition (ALD) allows for fine control over the thickness, stoichiometry, and structural defects of materials. ALD provides a suitable route to deposit lead halides, which can further be converted to perovskites for photovoltaics, photoemission, and photodetection, among other applications. Deposition of lead halides by ALD has already begun to be explored; however, the precursors used in published processes are highly hazardous, require expensive fabrication processes, or contain impurities that can jeopardize the optoelectronic properties of metal halide perovskites after conversion. In this work, we deposited lead iodide (PbI2) by a facile ALD process involving only two readily accessible and low-cost precursors. PbI2 nanocrystals were grown on soda-lime glass (SLG), silicon dioxide support grids, and silicon wafer substrates and provided the groundwork for further investigation into developing lead halide perovskite processes by ALD. Further, the ALD-grown PbI2 was characterized by annular dark-field scanning transmission electron microscopy (ADF-STEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), X-ray fluorescence (XRF), and X-ray photoemission spectroscopy (XPS), among other methods. This work presents the first step to synthesize lead halide perovskites with atomic control for applications such as interfacial layers in photovoltaics and for deposition in microcavities for lasing.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [3];  [3];  [1]; ORCiD logo [1]
  1. Georgia Institute of Technology, Atlanta, GA (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States). Advanced Photon Source (APS)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); Georgia Tech Graduate Assistance in Areas of National Need (GAANN); USDOD; Micron Foundation; Goizueta Foundation
OSTI Identifier:
1901700
Alternate Identifier(s):
OSTI ID: 1888291
Report Number(s):
BNL-223402-2022-JAAM
Journal ID: ISSN 0897-4756; 173598
Grant/Contract Number:  
AC02-06CH11357; SC0012704; ECCS-1542174
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 34; Journal Issue: 6; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Atomic layer deposition; Deposition; Nanocrystals; Precursors; Thin films

Citation Formats

Vagott, Jacob N., Bairley, Kathryn, Hidalgo, Juanita, Perini, Carlo A. R., Castro-Méndez, Andrés-Felipe, Lombardo, Sarah, Lai, Barry, Zhang, Lihua, Kisslinger, Kim, Kacher, Josh, and Correa-Baena, Juan-Pablo. PbI2 Nanocrystal Growth by Atomic Layer Deposition from Pb(tmhd)2 and HI. United States: N. p., 2022. Web. doi:10.1021/acs.chemmater.1c03093.
Vagott, Jacob N., Bairley, Kathryn, Hidalgo, Juanita, Perini, Carlo A. R., Castro-Méndez, Andrés-Felipe, Lombardo, Sarah, Lai, Barry, Zhang, Lihua, Kisslinger, Kim, Kacher, Josh, & Correa-Baena, Juan-Pablo. PbI2 Nanocrystal Growth by Atomic Layer Deposition from Pb(tmhd)2 and HI. United States. https://doi.org/10.1021/acs.chemmater.1c03093
Vagott, Jacob N., Bairley, Kathryn, Hidalgo, Juanita, Perini, Carlo A. R., Castro-Méndez, Andrés-Felipe, Lombardo, Sarah, Lai, Barry, Zhang, Lihua, Kisslinger, Kim, Kacher, Josh, and Correa-Baena, Juan-Pablo. Tue . "PbI2 Nanocrystal Growth by Atomic Layer Deposition from Pb(tmhd)2 and HI". United States. https://doi.org/10.1021/acs.chemmater.1c03093. https://www.osti.gov/servlets/purl/1901700.
@article{osti_1901700,
title = {PbI2 Nanocrystal Growth by Atomic Layer Deposition from Pb(tmhd)2 and HI},
author = {Vagott, Jacob N. and Bairley, Kathryn and Hidalgo, Juanita and Perini, Carlo A. R. and Castro-Méndez, Andrés-Felipe and Lombardo, Sarah and Lai, Barry and Zhang, Lihua and Kisslinger, Kim and Kacher, Josh and Correa-Baena, Juan-Pablo},
abstractNote = {Atomic layer deposition (ALD) allows for fine control over the thickness, stoichiometry, and structural defects of materials. ALD provides a suitable route to deposit lead halides, which can further be converted to perovskites for photovoltaics, photoemission, and photodetection, among other applications. Deposition of lead halides by ALD has already begun to be explored; however, the precursors used in published processes are highly hazardous, require expensive fabrication processes, or contain impurities that can jeopardize the optoelectronic properties of metal halide perovskites after conversion. In this work, we deposited lead iodide (PbI2) by a facile ALD process involving only two readily accessible and low-cost precursors. PbI2 nanocrystals were grown on soda-lime glass (SLG), silicon dioxide support grids, and silicon wafer substrates and provided the groundwork for further investigation into developing lead halide perovskite processes by ALD. Further, the ALD-grown PbI2 was characterized by annular dark-field scanning transmission electron microscopy (ADF-STEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), X-ray fluorescence (XRF), and X-ray photoemission spectroscopy (XPS), among other methods. This work presents the first step to synthesize lead halide perovskites with atomic control for applications such as interfacial layers in photovoltaics and for deposition in microcavities for lasing.},
doi = {10.1021/acs.chemmater.1c03093},
journal = {Chemistry of Materials},
number = 6,
volume = 34,
place = {United States},
year = {Tue Mar 08 00:00:00 EST 2022},
month = {Tue Mar 08 00:00:00 EST 2022}
}

Works referenced in this record:

Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays
journal, April 2011

  • Caldeira Filho, A. M.; Mulato, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 636, Issue 1
  • DOI: 10.1016/j.nima.2011.01.093

Angle resolved photoemission studies of the band structures of semiconductors: PbI2
journal, November 1977


Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells
journal, August 2020

  • Soltanpoor, Wiria; Dreessen, Chris; Sahiner, Mehmet Cem
  • ACS Applied Energy Materials, Vol. 3, Issue 9
  • DOI: 10.1021/acsaem.0c00686

Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules
journal, May 2020


Controlled Deposition of Lead Iodide and Lead Chloride Thin Films by Low-Pressure Chemical Vapor Deposition
journal, December 2020

  • Ngqoloda, Siphelo; Arendse, Christopher J.; Muller, Theophillus F.
  • Coatings, Vol. 10, Issue 12
  • DOI: 10.3390/coatings10121208

A brief review of atomic layer deposition: from fundamentals to applications
journal, June 2014


Atomic layer deposition enabling higher efficiency solar cells: A review
journal, September 2020


Halide Perovskite Photovoltaics: Background, Status, and Future Prospects
journal, March 2019


Halide lead perovskites for ionizing radiation detection
journal, March 2019


Solution-processed semiconductors for next-generation photodetectors
journal, January 2017

  • García de Arquer, F. Pelayo; Armin, Ardalan; Meredith, Paul
  • Nature Reviews Materials, Vol. 2, Issue 3
  • DOI: 10.1038/natrevmats.2016.100

Inorganic Materials by Atomic Layer Deposition for Perovskite Solar Cells
journal, January 2021


Ultra-thin TiO2 films by atomic layer deposition and surface functionalization with Au nanodots for sensing applications
journal, November 2018

  • Lupan, Oleg; Postica, Vasile; Ababii, Nicolai
  • Materials Science in Semiconductor Processing, Vol. 87
  • DOI: 10.1016/j.mssp.2018.06.031

Improved Morphology Control Using a Modified Two-Step Method for Efficient Perovskite Solar Cells
journal, October 2014

  • Bi, Dongqin; El-Zohry, Ahmed M.; Hagfeldt, Anders
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am504320h

Scalable fabrication and coating methods for perovskite solar cells and solar modules
journal, February 2020


Thermally evaporated methylammonium-free perovskite solar cells
journal, January 2020

  • Ji, Ran; Zhang, Zongbao; Cho, Changsoon
  • Journal of Materials Chemistry C, Vol. 8, Issue 23
  • DOI: 10.1039/d0tc01550d

The role of grain boundaries in perovskite solar cells
journal, March 2018


Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites
journal, December 2017


Heat mitigation in perovskite solar cells: The role of grain boundaries
journal, January 2021

  • Mehdizadeh-Rad, Hooman; Mehdizadeh-Rad, Farhad; Zhu, Furong
  • Solar Energy Materials and Solar Cells, Vol. 220
  • DOI: 10.1016/j.solmat.2020.110837

Perovskite Thin Films via Atomic Layer Deposition
journal, October 2014

  • Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.
  • Advanced Materials, Vol. 27, Issue 1
  • DOI: 10.1002/adma.201403965

Atomic Layer Deposition of PbI 2 Thin Films
journal, January 2019


Intriguing Optoelectronic Properties of Metal Halide Perovskites
journal, June 2016


High-performance methylammonium-free ideal-band-gap perovskite solar cells
journal, April 2021


Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells
journal, May 2014

  • Hao, Feng; Stoumpos, Constantinos C.; Chang, Robert P. H.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5033259

Exploiting volatile lead compounds as precursors for the atomic layer deposition of lead dioxide thin films
journal, February 2006


On the Crystal Structure and some Structuredependent Properties of Lead(Ii) β-Diketonates
journal, January 1998

  • Krisyuk, Vladislav V.; Baidina, Iraida A.; Igumenov, Igor K.
  • Main Group Metal Chemistry, Vol. 21, Issue 4
  • DOI: 10.1515/MGMC.1998.21.4.199

Understanding chemical and physical mechanisms in atomic layer deposition
journal, January 2020

  • Richey, Nathaniel E.; de Paula, Camila; Bent, Stacey F.
  • The Journal of Chemical Physics, Vol. 152, Issue 4
  • DOI: 10.1063/1.5133390

Atomic Layer Deposition of Lead Sulfide Quantum Dots on Nanowire Surfaces
journal, March 2011

  • Dasgupta, Neil P.; Jung, Hee Joon; Trejo, Orlando
  • Nano Letters, Vol. 11, Issue 3, p. 934-940
  • DOI: 10.1021/nl103001h

Thermal Stability of Hydroxyl Groups on a Well-Defined Silica Surface
journal, March 1995

  • Sneh, Ofer; George, Steven M.
  • The Journal of Physical Chemistry, Vol. 99, Issue 13
  • DOI: 10.1021/j100013a039

Growth of thin film ferroelectric PZT, PHT, and antiferroelectric PHO from atomic layer deposition precursors
journal, November 2020

  • Strnad, Nicholas A.; Hanrahan, Brendan M.; Potrepka, Daniel M.
  • Journal of the American Ceramic Society, Vol. 104, Issue 3
  • DOI: 10.1111/jace.17521

Atomic Layer Deposition of Metal Sulfide Materials
journal, January 2015

  • Dasgupta, Neil P.; Meng, Xiangbo; Elam, Jeffrey W.
  • Accounts of Chemical Research, Vol. 48, Issue 2, p. 341-348
  • DOI: 10.1021/ar500360d

Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection
journal, February 2017

  • Grillo, Fabio; Van Bui, Hao; Moulijn, Jacob A.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 5
  • DOI: 10.1021/acs.jpclett.6b02978

In situ growth of epitaxial lead iodide films composed of hexagonal single crystals
journal, January 2005

  • Zheng, Zhi; Liu, Airuo; Wang, Shumin
  • Journal of Materials Chemistry, Vol. 15, Issue 42
  • DOI: 10.1039/b510077a

A review of polytypism in lead iodide
journal, April 2010


Insights into the formation mechanism of two-dimensional lead halide nanostructures
journal, January 2018

  • Klein, Eugen; Lesyuk, Rostyslav; Klinke, Christian
  • Nanoscale, Vol. 10, Issue 9
  • DOI: 10.1039/c7nr09564c

Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation
journal, May 2019

  • Alberti, Alessandra; Bongiorno, Corrado; Smecca, Emanuele
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-09909-0

The structure of PbI 2 polytypes 2H and 4H: a study of the 2H-4H transition
journal, June 1990


Tuning the reactivity of PbI2 film via monolayer Ti3C2Tx MXene for two-step-processed CH3NH3PbI3 solar cells
journal, August 2021


Growth and properties of lead iodide thin films by spin coating
journal, September 2016


Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing
journal, October 2017


Orientation-Controlled (h0l) PbI2 Crystallites Using a Novel Pb–Precursor for Facile and Quick Sequential MAPbI3 Perovskite Deposition
journal, November 2020


Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVa compounds
journal, March 1973

  • Morgan, Wayne E.; Van Wazer, John R.
  • The Journal of Physical Chemistry, Vol. 77, Issue 7
  • DOI: 10.1021/j100626a023

X-ray photoelectron spectra of halogens in coordination compounds
journal, January 1977