DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries

Abstract

Owing to their high specific capacity and suitably low operating potential, silicon-based anodes are an attractive alternative to graphite in next-generation lithium-ion batteries. However, silicon anodes suffer from low initial coulombic efficiency and fast capacity decay, limiting their widespread application. Pre-lithiation strategies are highly appealing to compensate for irreversible active lithium loss and to boost the cell energy density. In this work, we maximize the cell energy density by direct pre-lithiation of the NMC (LiNi0.5Mn0.3Co0.2O2) cathode to Li1+xNMCO2 without introducing inactive deadweight to either electrode. First, we demonstrate that Li1+xNMCO2 can be synthesized chemically, via reaction between NMC and lithium napthalide, and electrochemically. The NMC cathode is tolerant of a one-time over-lithiation up to 60 mA h gNMC-1, giving capacity retention on par with untreated NMC in half cell electrochemical cycling. Using synchrotron X-ray absorption spectroscopy (ex situ) and diffraction (in situ), we demonstrate that higher amounts of over-lithiation lead to local structure distortion – driven by transition metal reduction to Jahn–Teller active Mn3+ and Co2+ – as well as bulk structural hysteresis during over-lithiation and layer “buckling” that increases the amount of lithium extracted from the structure in the charged state. The Li1+xNMCO2 with low-to-moderate over-lithiation capacity (23, 46,more » and 70 mA h gNMC-1) is proven to be a highly effective dual-purpose lithium source and cathode material in full cell tests with a commercially relevant Si–graphite anode. These cells show higher capacity, superior cycle life, and improved coulombic efficiencies when compared to those with stoichiometric NMC cathodes. Finally, this study introduces a new and simple method to pre-lithiate layered transition metal oxide cathodes, opening up new possibilities for the development of high energy density lithium-ion batteries with next-generation anodes.« less

Authors:
ORCiD logo [1];  [2];  [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Cambridge (United Kingdom)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE
OSTI Identifier:
1798133
Alternate Identifier(s):
OSTI ID: 1784357
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 9; Journal Issue: 21; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Dose, Wesley M., Kim, Soojeong, Liu, Qian, Trask, Stephen E., Dunlop, Alison R., Ren, Yang, Zhang, Zhengcheng, Fister, Timothy T., and Johnson, Christopher S. Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries. United States: N. p., 2021. Web. doi:10.1039/d1ta01290h.
Dose, Wesley M., Kim, Soojeong, Liu, Qian, Trask, Stephen E., Dunlop, Alison R., Ren, Yang, Zhang, Zhengcheng, Fister, Timothy T., & Johnson, Christopher S. Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries. United States. https://doi.org/10.1039/d1ta01290h
Dose, Wesley M., Kim, Soojeong, Liu, Qian, Trask, Stephen E., Dunlop, Alison R., Ren, Yang, Zhang, Zhengcheng, Fister, Timothy T., and Johnson, Christopher S. Fri . "Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries". United States. https://doi.org/10.1039/d1ta01290h. https://www.osti.gov/servlets/purl/1798133.
@article{osti_1798133,
title = {Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries},
author = {Dose, Wesley M. and Kim, Soojeong and Liu, Qian and Trask, Stephen E. and Dunlop, Alison R. and Ren, Yang and Zhang, Zhengcheng and Fister, Timothy T. and Johnson, Christopher S.},
abstractNote = {Owing to their high specific capacity and suitably low operating potential, silicon-based anodes are an attractive alternative to graphite in next-generation lithium-ion batteries. However, silicon anodes suffer from low initial coulombic efficiency and fast capacity decay, limiting their widespread application. Pre-lithiation strategies are highly appealing to compensate for irreversible active lithium loss and to boost the cell energy density. In this work, we maximize the cell energy density by direct pre-lithiation of the NMC (LiNi0.5Mn0.3Co0.2O2) cathode to Li1+xNMCO2 without introducing inactive deadweight to either electrode. First, we demonstrate that Li1+xNMCO2 can be synthesized chemically, via reaction between NMC and lithium napthalide, and electrochemically. The NMC cathode is tolerant of a one-time over-lithiation up to 60 mA h gNMC-1, giving capacity retention on par with untreated NMC in half cell electrochemical cycling. Using synchrotron X-ray absorption spectroscopy (ex situ) and diffraction (in situ), we demonstrate that higher amounts of over-lithiation lead to local structure distortion – driven by transition metal reduction to Jahn–Teller active Mn3+ and Co2+ – as well as bulk structural hysteresis during over-lithiation and layer “buckling” that increases the amount of lithium extracted from the structure in the charged state. The Li1+xNMCO2 with low-to-moderate over-lithiation capacity (23, 46, and 70 mA h gNMC-1) is proven to be a highly effective dual-purpose lithium source and cathode material in full cell tests with a commercially relevant Si–graphite anode. These cells show higher capacity, superior cycle life, and improved coulombic efficiencies when compared to those with stoichiometric NMC cathodes. Finally, this study introduces a new and simple method to pre-lithiate layered transition metal oxide cathodes, opening up new possibilities for the development of high energy density lithium-ion batteries with next-generation anodes.},
doi = {10.1039/d1ta01290h},
journal = {Journal of Materials Chemistry. A},
number = 21,
volume = 9,
place = {United States},
year = {Fri May 21 00:00:00 EDT 2021},
month = {Fri May 21 00:00:00 EDT 2021}
}

Works referenced in this record:

Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes: I. Nickel-Rich, LiNi
journal, December 2016

  • Schipper, Florian; Erickson, Evan M.; Erk, Christoph
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0351701jes

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

In Situ Mitigation of First-Cycle Anode Irreversibility in a New Spinel/FeSb Lithium-Ion Cell Enabled via a Microwave-Assisted Chemical Lithiation Process
journal, October 2014

  • Moorhead-Rosenberg, Zachary; Allcorn, Eric; Manthiram, Arumugam
  • Chemistry of Materials, Vol. 26, Issue 20
  • DOI: 10.1021/cm5024426

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


X-ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li 1 - x Co 1/ 3 Ni 1/3 Mn 1/3 O 2 ( x = 0 → 1)
journal, April 2006

  • Yin, S. -C.; Rho, Y. -H.; Swainson, I.
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm0511769

Charge-Transfer-Induced Lattice Collapse in Ni-Rich NCM Cathode Materials during Delithiation
journal, October 2017

  • Kondrakov, Aleksandr O.; Geßwein, Holger; Galdina, Kristina
  • The Journal of Physical Chemistry C, Vol. 121, Issue 44
  • DOI: 10.1021/acs.jpcc.7b06598

Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells
journal, January 2003

  • Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613291

The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material
journal, July 2014


A prelithiated carbon anode for lithium-ion battery applications
journal, November 2006


Lithium rhenium( vii ) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors
journal, January 2016

  • Jeżowski, P.; Fic, K.; Crosnier, O.
  • Journal of Materials Chemistry A, Vol. 4, Issue 32
  • DOI: 10.1039/C6TA03810G

Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge
journal, January 2016

  • Qian, Kun; Li, Yiyang; He, Yan-Bing
  • RSC Advances, Vol. 6, Issue 80
  • DOI: 10.1039/C6RA11288A

Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries
journal, January 2017

  • Holtstiege, Florian; Wilken, Andrea; Winter, Martin
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 38
  • DOI: 10.1039/C7CP05405J

Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries
journal, October 2018


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

First-cycle irreversibility of layered Li–Ni–Co–Mn oxide cathode in Li-ion batteries
journal, December 2008


Electrochemical behaviors of LiCo1/3Ni1/3Mn1/3O2 in lithium batteries at elevated temperatures
journal, August 2005


The role of Li2MO2 structures (M=metal ion) in the electrochemistry of (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 electrodes for lithium-ion batteries
journal, June 2002


Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4
journal, April 1987

  • David, W. I. F.; Thackeray, M. M.; De Picciotto, L. A.
  • Journal of Solid State Chemistry, Vol. 67, Issue 2
  • DOI: 10.1016/0022-4596(87)90369-0

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


A High-Voltage and High-Capacity Li 1+ x Ni 0.5 Mn 1.5 O 4 Cathode Material: From Synthesis to Full Lithium-Ion Cells
journal, June 2016

  • Mancini, Marilena; Axmann, Peter; Gabrielli, Giulio
  • ChemSusChem, Vol. 9, Issue 14
  • DOI: 10.1002/cssc.201600365

Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) Cathode
journal, January 2016

  • Kasnatscheew, Johannes; Rodehorst, Uta; Streipert, Benjamin
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0461614jes

Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


CoO2, The End Member of the LixCoO2 Solid Solution
journal, January 1996

  • Amatucci, G. G.; Tarascon, J. M.; Klein, L. C.
  • Journal of The Electrochemical Society, Vol. 143, Issue 3, p. 1114-1123
  • DOI: 10.1149/1.1836594

Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
journal, July 2011

  • Liu, Nian; Hu, Liangbing; McDowell, Matthew T.
  • ACS Nano, Vol. 5, Issue 8
  • DOI: 10.1021/nn2017167

Lithium Oxalate as Capacity and Cycle-Life Enhancer in LNMO/Graphite and LNMO/SiG Full Cells
journal, January 2018

  • Solchenbach, Sophie; Wetjen, Morten; Pritzl, Daniel
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0611803jes

Structural Characterization of Layered Li x Ni 0.5 Mn 0.5 O 2 (0 < x ≤ 2) Oxide Electrodes for Li Batteries
journal, June 2003

  • Johnson, Christopher S.; Kim, Jeom-Soo; Kropf, A. Jeremy
  • Chemistry of Materials, Vol. 15, Issue 12
  • DOI: 10.1021/cm0204728

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Effects of Upper Cutoff Potential on LaPO 4 -Coated and Uncoated Li[Ni 0.42 Mn 0.42 Co 0.16 ]O 2 /Graphite Pouch Cells
journal, November 2015

  • Nelson, K. J.; Abarbanel, D. W.; Xia, Jian
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0691602jes

In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes
journal, January 2016


A new approach for compensating the irreversible capacity loss of high-energy Si/C|LiNi 0.5 Mn 1.5 O 4 lithium-ion batteries
journal, May 2017


Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
journal, September 1997


Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 cell at elevated temperature and additives to improve its cycle life
journal, January 2011

  • Amine, Khalil; Chen, Zonghai; Zhang, Z.
  • Journal of Materials Chemistry, Vol. 21, Issue 44
  • DOI: 10.1039/c1jm11584g

Enabling high energy density Li-ion batteries through Li2O activation
journal, September 2016


Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries
journal, July 2008


A new strategy to mitigate the initial capacity loss of lithium ion batteries
journal, August 2016


Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells
journal, June 2012


Beneficial Effect of Li 5 FeO 4 Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode
journal, December 2020

  • Dose, Wesley M.; Villa, Cesar; Hu, Xiaobing
  • Journal of The Electrochemical Society, Vol. 167, Issue 16
  • DOI: 10.1149/1945-7111/abd1ef

6 Li and 7 Li MAS NMR Studies of Lithium Manganate Cathode Materials
journal, December 1998

  • Lee, Young Joo; Wang, Francis; Grey, Clare P.
  • Journal of the American Chemical Society, Vol. 120, Issue 48
  • DOI: 10.1021/ja9817794

Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests
journal, January 2008

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 155, Issue 8
  • DOI: 10.1149/1.2939211

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes
journal, March 2020

  • Grenier, Antonin; Reeves, Philip J.; Liu, Hao
  • Journal of the American Chemical Society, Vol. 142, Issue 15
  • DOI: 10.1021/jacs.9b13551

Application of Stabilized Lithium Metal Powder (SLMP®) in graphite anode – A high efficient prelithiation method for lithium-ion batteries
journal, August 2014


Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNi 0.8 Co 0.15 Al 0.05 O 2
journal, June 2017


Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells
journal, December 2016

  • Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1111702jes

Aging Analysis of Graphite/LiNi 1/3 Mn 1/3 Co 1/3 O 2 Cells Using XRD, PGAA, and AC Impedance
journal, January 2015

  • Buchberger, Irmgard; Seidlmayer, Stefan; Pokharel, Aneil
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0721514jes

Electrochemical Performance and Phase Transitions between 1.5 and 4.9 V of Highly-Ordered LiNi 0.5 Mn 1.5 O 4 with Tailored Morphology: Influence of the Lithiation Method
journal, December 2016

  • Mancini, M.; Gabrielli, G.; Axmann, P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0291701jes

Lithium Sulfide/Metal Nanocomposite as a High-Capacity Cathode Prelithiation Material
journal, May 2016

  • Sun, Yongming; Lee, Hyun-Wook; Seh, Zhi Wei
  • Advanced Energy Materials, Vol. 6, Issue 12
  • DOI: 10.1002/aenm.201600154

Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells
journal, December 2015


Switch of the Charge Storage Mechanism of Li x Ni 0.80 Co 0.15 Al 0.05 O 2 at Overdischarge Conditions
journal, March 2018


Evolution of the Electrode–Electrolyte Interface of LiNi 0.8 Co 0.15 Al 0.05 O 2 Electrodes Due to Electrochemical and Thermal Stress
journal, January 2018


Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)
journal, August 2013

  • Forney, Michael W.; Ganter, Matthew J.; Staub, Jason W.
  • Nano Letters, Vol. 13, Issue 9, p. 4158-4163
  • DOI: 10.1021/nl401776d

Short Range and Long Range Magnetic Order in 1T-Li2NiO2
journal, August 1993

  • Davidson, I. J.; Greedan, J. E.; Von Sacken, U.
  • Journal of Solid State Chemistry, Vol. 105, Issue 2
  • DOI: 10.1006/jssc.1993.1233

Li Metal-Free Rechargeable Batteries Based on Li[sub 1+x]Mn[sub 2]O[sub 4] Cathodes (0 ≤ x ≤ 1) and Carbon Anodes
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085331

Li 2 O 2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries
journal, January 2017

  • Bie, Yitian; Yang, Jun; Wang, Jiulin
  • Chemical Communications, Vol. 53, Issue 59
  • DOI: 10.1039/C7CC04646D

The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
journal, January 2011

  • Oumellal, Y.; Delpuech, N.; Mazouzi, D.
  • Journal of Materials Chemistry, Vol. 21, Issue 17
  • DOI: 10.1039/c1jm10213c

Li 3 N as a Cathode Additive for High-Energy-Density Lithium-Ion Batteries
journal, March 2016

  • Park, Kyusung; Yu, Byeong-Chul; Goodenough, John B.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502534

Factors that affect Li mobility in layered lithium transition metal oxides
journal, September 2006


Effect of LiPF6 concentration in Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch cells operated at 4.5 V
journal, December 2015


Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li-Ion Batteries
journal, April 2017

  • Aravindan, Vanchiappan; Lee, Yun-Sung; Madhavi, Srinivasan
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201602607

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon
journal, September 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 19
  • DOI: 10.1021/acs.jpclett.7b01927

Li-Metal-Free Prelithiation of Si-Based Negative Electrodes for Full Li-Ion Batteries
journal, July 2015


Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy
journal, January 2016

  • Wandt, Johannes; Freiberg, Anna; Thomas, Rowena
  • Journal of Materials Chemistry A, Vol. 4, Issue 47
  • DOI: 10.1039/C6TA08865A

Evolution of Structure and Lithium Dynamics in LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) Cathodes during Electrochemical Cycling
journal, March 2019


Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model
journal, January 2014

  • Radvanyi, Etienne; Porcher, Willy; De Vito, Eric
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 32
  • DOI: 10.1039/C4CP02324B

Liquid Ammonia Chemical Lithiation: An Approach for High-Energy and High-Voltage Si–Graphite|Li 1+ x Ni 0.5 Mn 1.5 O 4 Li-Ion Batteries
journal, June 2019

  • Dose, Wesley M.; Blauwkamp, James; Piernas-Muñoz, María José
  • ACS Applied Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1021/acsaem.9b00695

Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density
journal, October 2016


Lithium Intercalation from Aqueous Solutions
journal, January 1994

  • Li, W.
  • Journal of The Electrochemical Society, Vol. 141, Issue 9
  • DOI: 10.1149/1.2055118

Assessment of Li-Inventory in Cycled Si-Graphite Anodes Using LiFePO 4 as a Diagnostic Cathode
journal, January 2018

  • Dose, Wesley M.; Maroni, Victor A.; Piernas-Muñoz, Maria Jose
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.1271810jes

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Microstructural Observation of LiNi 0.8 Co 0.15 Al 0.05 O 2 after Charge and Discharge by Scanning Transmission Electron Microscopy
journal, January 2012

  • Makimura, Yoshinari; Zheng, Shijian; Ikuhara, Yuichi
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.073207jes