skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

Abstract

High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF 3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi 0.76Co 0.10Mn 0.14O 2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g -1 at C/10 rate and 180 mA h g -1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) asmore » evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full cell fabrication and test, full pouch cells with high capacity of 2.2 Ah and 1.2 Ah have been fabricated and delivered. The cells show great uniformity and good cycling performance. The prelithiation method effectively compensate the loss in the first cycle. The cell with high energy density and long-cycle life has been achieved.« less

Authors:
 [1];  [2];  [3];  [4];  [5]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Univ. of Texas, Austin, TX (United States)
  3. EC Power LLC, State College, PA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Contributing Org.:
Dr. Gao Liu at LBNL and Dr. Zhengcheng Zhang at ANL
OSTI Identifier:
1356813
Report Number(s):
DOE-Penn State-6447
DOE Contract Number:
EE0006447
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Wang, Donghai, Manthiram, Arumugam, Wang, Chao-Yang, Liu, Gao, and Zhang, Zhengcheng. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application. United States: N. p., 2017. Web. doi:10.2172/1356813.
Wang, Donghai, Manthiram, Arumugam, Wang, Chao-Yang, Liu, Gao, & Zhang, Zhengcheng. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application. United States. doi:10.2172/1356813.
Wang, Donghai, Manthiram, Arumugam, Wang, Chao-Yang, Liu, Gao, and Zhang, Zhengcheng. Mon . "High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application". United States. doi:10.2172/1356813. https://www.osti.gov/servlets/purl/1356813.
@article{osti_1356813,
title = {High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application},
author = {Wang, Donghai and Manthiram, Arumugam and Wang, Chao-Yang and Liu, Gao and Zhang, Zhengcheng},
abstractNote = {High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full cell fabrication and test, full pouch cells with high capacity of 2.2 Ah and 1.2 Ah have been fabricated and delivered. The cells show great uniformity and good cycling performance. The prelithiation method effectively compensate the loss in the first cycle. The cell with high energy density and long-cycle life has been achieved.},
doi = {10.2172/1356813},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 15 00:00:00 EDT 2017},
month = {Mon May 15 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety,more » cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.« less
  • One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed withmore » test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.« less
  • One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed withmore » test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.« less
  • This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%)more » and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.« less