DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Beneficial Effect of Li5FeO4 Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode

Abstract

The energy density of lithium-ion batteries can be increased by replacing the traditional graphite anode with a high capacity silicon anode. However, volume changes and interfacial instabilities cause a large irreversible capacity and a continual loss of lithium during cycling, which lead to rapid capacity loss. In this work, we add Li5FeO4 (LFO) to a LiNi0.5Mn0.3Co0.2O2 (NMC) cathode as a pre-lithiation additive, which increases the lithium inventory and extends the cycle life of Si-graphite/NMC full cells, and decreases the NMC particle degradation. LFO delivers a large 764 mAh g–1LFO capacity below 4.7 V vs Li/Li+. By tuning the LFO content in Si-graphite/LFO-NMC full cells, we show higher capacity, improved retention, lower impedance, and superior rate performance compared to full cells without LFO. Post-test characterizations demonstrate that LFO inclusion in the cathode matrix leads to less NMC secondary particle segregation/cracking and a thinner surface reduced layer on the NMC particles. The beneficial effects of LFO endure after the lithium reserve has been exhausted, highlighting a lasting synergy between the lithium source and electrode active materials. This study introduces a new approach to simultaneously increase lithium inventory and reduce cathode degradation, and makes critical advances toward enabling Si anodes for lithium-ion batteries.

Authors:
 [1];  [2]; ORCiD logo [2];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  2. Northwestern Univ., Evanston, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
OSTI Identifier:
1782722
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society (Online)
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society (Online); Journal Volume: 167; Journal Issue: 16; Journal ID: ISSN 1945-7111
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Si anode; blended electrode; cathode additive; lithium-ion battery; pre-lithiation

Citation Formats

Dose, Wesley M., Villa, Cesar, Hu, Xiaobing, Dunlop, Alison R., Piernas-Muñoz, Maria Jose, Maroni, Victor A., Trask, Stephen E., Bloom, Ira, Dravid, Vinayak, and Johnson, Christopher S. Beneficial Effect of Li5FeO4 Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode. United States: N. p., 2020. Web. doi:10.1149/1945-7111/abd1ef.
Dose, Wesley M., Villa, Cesar, Hu, Xiaobing, Dunlop, Alison R., Piernas-Muñoz, Maria Jose, Maroni, Victor A., Trask, Stephen E., Bloom, Ira, Dravid, Vinayak, & Johnson, Christopher S. Beneficial Effect of Li5FeO4 Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode. United States. https://doi.org/10.1149/1945-7111/abd1ef
Dose, Wesley M., Villa, Cesar, Hu, Xiaobing, Dunlop, Alison R., Piernas-Muñoz, Maria Jose, Maroni, Victor A., Trask, Stephen E., Bloom, Ira, Dravid, Vinayak, and Johnson, Christopher S. Wed . "Beneficial Effect of Li5FeO4 Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode". United States. https://doi.org/10.1149/1945-7111/abd1ef. https://www.osti.gov/servlets/purl/1782722.
@article{osti_1782722,
title = {Beneficial Effect of Li5FeO4 Lithium Source for Li-Ion Batteries with a Layered NMC Cathode and Si Anode},
author = {Dose, Wesley M. and Villa, Cesar and Hu, Xiaobing and Dunlop, Alison R. and Piernas-Muñoz, Maria Jose and Maroni, Victor A. and Trask, Stephen E. and Bloom, Ira and Dravid, Vinayak and Johnson, Christopher S.},
abstractNote = {The energy density of lithium-ion batteries can be increased by replacing the traditional graphite anode with a high capacity silicon anode. However, volume changes and interfacial instabilities cause a large irreversible capacity and a continual loss of lithium during cycling, which lead to rapid capacity loss. In this work, we add Li5FeO4 (LFO) to a LiNi0.5Mn0.3Co0.2O2 (NMC) cathode as a pre-lithiation additive, which increases the lithium inventory and extends the cycle life of Si-graphite/NMC full cells, and decreases the NMC particle degradation. LFO delivers a large 764 mAh g–1LFO capacity below 4.7 V vs Li/Li+. By tuning the LFO content in Si-graphite/LFO-NMC full cells, we show higher capacity, improved retention, lower impedance, and superior rate performance compared to full cells without LFO. Post-test characterizations demonstrate that LFO inclusion in the cathode matrix leads to less NMC secondary particle segregation/cracking and a thinner surface reduced layer on the NMC particles. The beneficial effects of LFO endure after the lithium reserve has been exhausted, highlighting a lasting synergy between the lithium source and electrode active materials. This study introduces a new approach to simultaneously increase lithium inventory and reduce cathode degradation, and makes critical advances toward enabling Si anodes for lithium-ion batteries.},
doi = {10.1149/1945-7111/abd1ef},
journal = {Journal of the Electrochemical Society (Online)},
number = 16,
volume = 167,
place = {United States},
year = {Wed Dec 23 00:00:00 EST 2020},
month = {Wed Dec 23 00:00:00 EST 2020}
}

Works referenced in this record:

Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells
journal, January 2003

  • Abraham, D. P.; Twesten, R. D.; Balasubramanian, M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 11
  • DOI: 10.1149/1.1613291

Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries
journal, January 2017

  • Holtstiege, Florian; Wilken, Andrea; Winter, Martin
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 38
  • DOI: 10.1039/C7CP05405J

Microstructural Evolution in Transition-metal-oxide Cathode Materials for Lithium-Ion Batteries
journal, July 2016

  • Miller, Dean J.; Sheng, Huaping; Wang, Lifen
  • Microscopy and Microanalysis, Vol. 22, Issue S3
  • DOI: 10.1017/S1431927616007340

Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries
journal, January 2015

  • Yoon, Taeho; Nguyen, Cao Cuong; Seo, Daniel M.
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0731512jes

Alternating Current Impedance Electrochemical Modeling of Lithium-Ion Positive Electrodes
journal, January 2005

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 152, Issue 7
  • DOI: 10.1149/1.1928169

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries
journal, December 2013


Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
journal, October 2010

  • Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100871y

Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
journal, September 2014


Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes
journal, January 2012

  • Dalavi, Swapnil; Guduru, Pradeep; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.076205jes

Chemical Weathering of Layered Ni-Rich Oxide Electrode Materials: Evidence for Cation Exchange
journal, January 2017

  • Shkrob, Ilya A.; Gilbert, James A.; Phillips, Patrick J.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0861707jes

Ni–Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode
journal, October 2020


Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode
journal, June 2010


Lithium Oxalate as Capacity and Cycle-Life Enhancer in LNMO/Graphite and LNMO/SiG Full Cells
journal, January 2018

  • Solchenbach, Sophie; Wetjen, Morten; Pritzl, Daniel
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0611803jes

Tailoring the Surface of Silicon Nanoparticles for Enhanced Chemical and Electrochemical Stability for Li-Ion Batteries
journal, August 2019

  • Jiang, Sisi; Hu, Bin; Sahore, Ritu
  • ACS Applied Energy Materials, Vol. 2, Issue 9
  • DOI: 10.1021/acsaem.9b01601

Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
journal, September 1997


The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi 0.8 Mn 0.1 Co 0.1 O 2 Electrodes
journal, January 2017

  • Li, Jing; Liu, Hanshuo; Xia, Jian
  • Journal of The Electrochemical Society, Vol. 164, Issue 4
  • DOI: 10.1149/2.0651704jes

Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches
journal, February 2015


Enabling high energy density Li-ion batteries through Li2O activation
journal, September 2016


Morphological Changes of Silicon Nanoparticles and the Influence of Cutoff Potentials in Silicon-Graphite Electrodes
journal, January 2018

  • Wetjen, Morten; Solchenbach, Sophie; Pritzl, Daniel
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.1261807jes

A new strategy to mitigate the initial capacity loss of lithium ion batteries
journal, August 2016


Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte
journal, October 2007


Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?
journal, May 2019


A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries
journal, July 2012

  • Koo, Bonjae; Kim, Hyunjung; Cho, Younghyun
  • Angewandte Chemie International Edition, Vol. 51, Issue 35
  • DOI: 10.1002/anie.201201568

Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries
journal, January 2016

  • Li, Chao; Shi, Tongfei; Li, Decheng
  • RSC Advances, Vol. 6, Issue 41
  • DOI: 10.1039/C5RA28021D

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

Electrochemical Modeling of Lithium-Ion Positive Electrodes during Hybrid Pulse Power Characterization Tests
journal, January 2008

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 155, Issue 8
  • DOI: 10.1149/1.2939211

Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells
journal, December 2016

  • Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1111702jes

Studies of the Capacity Fade Mechanisms of LiCoO 2 /Si-Alloy: Graphite Cells
journal, January 2016

  • Petibon, R.; Chevrier, V. L.; Aiken, C. P.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0191607jes

Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery
journal, November 2018

  • Jiang, Sisi; Hu, Bin; Sahore, Ritu
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 51
  • DOI: 10.1021/acsami.8b17729

Aging Analysis of Graphite/LiNi 1/3 Mn 1/3 Co 1/3 O 2 Cells Using XRD, PGAA, and AC Impedance
journal, January 2015

  • Buchberger, Irmgard; Seidlmayer, Stefan; Pokharel, Aneil
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0721514jes

Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries
journal, December 2007


Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability
journal, January 2008

  • Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 5
  • DOI: 10.1149/1.2888173

Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4
journal, October 2018


Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li 1.03 (Ni 0.5 Co 0.2 Mn 0.3 ) 0.97 O 2 /Silicon-Graphite Full Cells
journal, January 2016

  • Klett, Matilda; Gilbert, James A.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0271606jes

Observation of anisotropic microstructural changes during cycling in LiNi0.5Co0.2Mn0.3O2 cathode material
journal, February 2015


Differential voltage analyses of high-power, lithium-ion cells
journal, January 2005


Differential voltage analyses of high-power lithium-ion cells
journal, January 2005


The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
journal, January 2011

  • Oumellal, Y.; Delpuech, N.; Mazouzi, D.
  • Journal of Materials Chemistry, Vol. 21, Issue 17
  • DOI: 10.1039/c1jm10213c

A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries
journal, January 2017

  • Kasnatscheew, Johannes; Placke, Tobias; Streipert, Benjamin
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.0961712jes

Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li-Ion Batteries
journal, April 2017

  • Aravindan, Vanchiappan; Lee, Yun-Sung; Madhavi, Srinivasan
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201602607

Application of a lithium–tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells
journal, October 2004


Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes
journal, August 2018


Li 2 O Removal from Li 5 FeO 4 : A Cathode Precursor for Lithium-Ion Batteries
journal, February 2010

  • Johnson, C. S.; Kang, S. -H.; Vaughey, J. T.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902713m

Resistance Growth in Lithium-Ion Pouch Cells with LiNi 0.80 Co 0.15 Al 0.05 O 2 Positive Electrodes and Proposed Mechanism for Voltage Dependent Charge-Transfer Resistance
journal, January 2019

  • Weber, Rochelle; Louli, A. J.; Plucknett, K. P.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0361910jes

Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca)
journal, July 2019

  • Han, Binghong; Liao, Chen; Dogan, Fulya
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 33
  • DOI: 10.1021/acsami.9b07270

Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model
journal, January 2014

  • Radvanyi, Etienne; Porcher, Willy; De Vito, Eric
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 32
  • DOI: 10.1039/C4CP02324B

Liquid Ammonia Chemical Lithiation: An Approach for High-Energy and High-Voltage Si–Graphite|Li 1+ x Ni 0.5 Mn 1.5 O 4 Li-Ion Batteries
journal, June 2019

  • Dose, Wesley M.; Blauwkamp, James; Piernas-Muñoz, María José
  • ACS Applied Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1021/acsaem.9b00695

Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries
journal, January 2018

  • Jung, Roland; Morasch, Robert; Karayaylali, Pinar
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0401802jes

Assessment of Li-Inventory in Cycled Si-Graphite Anodes Using LiFePO 4 as a Diagnostic Cathode
journal, January 2018

  • Dose, Wesley M.; Maroni, Victor A.; Piernas-Muñoz, Maria Jose
  • Journal of The Electrochemical Society, Vol. 165, Issue 10
  • DOI: 10.1149/2.1271810jes

Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer
journal, August 2017


A review of Ni-based layered oxides for rechargeable Li-ion batteries
journal, January 2017

  • Xu, Jing; Lin, Feng; Doeff, Marca M.
  • Journal of Materials Chemistry A, Vol. 5, Issue 3
  • DOI: 10.1039/C6TA07991A

Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges
journal, January 2018


Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox
journal, December 2017


A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites
journal, April 2017

  • Lee, Suk-Woo; Kim, Hyun-Kyung; Kim, Myeong-Seong
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep46530