DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids

Abstract

Here, we study GaAs/AlGaAs devices hostinga two-dimensional electron gas and coated with a monolayer of chiral organic molecules.We observe clear signatures of room temperature magnetism, which is induced in these systems by applying a gate voltage. We explain this phenomenon as a consequence of the spin-polarized charges that are injectedinto the semiconductor through the chiral molecules. The orientation of the magnetic moment can be manipulated by low gate voltages, with a switching ratein the MHz range. Therefore, our devices implement an efficient, electric field controlled magnetization, which has long been desired for their technical prospects.

Authors:
 [1];  [2];  [1];  [2]; ORCiD logo [1];  [1];  [2]; ORCiD logo [1];  [1]
  1. Weizmann Inst. of Science, Rehovot (Israel)
  2. Hebrew Univ. of Jerusalem (Israel)
Publication Date:
Research Org.:
Univ. of Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Israel Science Foundation
OSTI Identifier:
1604757
Grant/Contract Number:  
FG02-07ER46430; 1889/16
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 10; Journal Issue: 5; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Smolinsky, Eilam Z. B., Neubauer, Avner, Kumar, Anup, Yochelis, Shira, Capua, Eyal, Carmieli, Raanan, Paltiel, Yossi, Naaman, Ron, and Michaeli, Karen. Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. United States: N. p., 2019. Web. doi:10.1021/acs.jpclett.9b00092.
Smolinsky, Eilam Z. B., Neubauer, Avner, Kumar, Anup, Yochelis, Shira, Capua, Eyal, Carmieli, Raanan, Paltiel, Yossi, Naaman, Ron, & Michaeli, Karen. Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids. United States. https://doi.org/10.1021/acs.jpclett.9b00092
Smolinsky, Eilam Z. B., Neubauer, Avner, Kumar, Anup, Yochelis, Shira, Capua, Eyal, Carmieli, Raanan, Paltiel, Yossi, Naaman, Ron, and Michaeli, Karen. Wed . "Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids". United States. https://doi.org/10.1021/acs.jpclett.9b00092. https://www.osti.gov/servlets/purl/1604757.
@article{osti_1604757,
title = {Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures–Chiral Organic Molecules Hybrids},
author = {Smolinsky, Eilam Z. B. and Neubauer, Avner and Kumar, Anup and Yochelis, Shira and Capua, Eyal and Carmieli, Raanan and Paltiel, Yossi and Naaman, Ron and Michaeli, Karen},
abstractNote = {Here, we study GaAs/AlGaAs devices hostinga two-dimensional electron gas and coated with a monolayer of chiral organic molecules.We observe clear signatures of room temperature magnetism, which is induced in these systems by applying a gate voltage. We explain this phenomenon as a consequence of the spin-polarized charges that are injectedinto the semiconductor through the chiral molecules. The orientation of the magnetic moment can be manipulated by low gate voltages, with a switching ratein the MHz range. Therefore, our devices implement an efficient, electric field controlled magnetization, which has long been desired for their technical prospects.},
doi = {10.1021/acs.jpclett.9b00092},
journal = {Journal of Physical Chemistry Letters},
number = 5,
volume = 10,
place = {United States},
year = {Wed Feb 20 00:00:00 EST 2019},
month = {Wed Feb 20 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices
journal, November 1988


Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
journal, March 1989


Magnetoelectronics
journal, November 1998


Spintronics: Fundamentals and applications
journal, April 2004


Spin transfer torques
journal, April 2008


Spin electronics a review
journal, September 2002


Magnetic Proximity Effect as a Pathway to Spintronic Applications of Topological Insulators
journal, October 2011

  • Vobornik, Ivana; Manju, Unnikrishnan; Fujii, Jun
  • Nano Letters, Vol. 11, Issue 10
  • DOI: 10.1021/nl201275q

Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures
journal, April 2010

  • Vaz, Carlos A. F.; Hoffman, Jason; Ahn, Charles H.
  • Advanced Materials, Vol. 22, Issue 26-27
  • DOI: 10.1002/adma.200904326

Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures
journal, April 2017


Magnetic Proximity Effect
journal, November 1969


Single Nanoparticle Magnetic Spin Memristor
journal, June 2018


Chiral-Induced Spin Selectivity Effect
journal, July 2012

  • Naaman, R.; Waldeck, David H.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 16
  • DOI: 10.1021/jz300793y

Helix-Dependent Spin Filtering through the DNA Duplex
journal, November 2016

  • Zwang, Theodore J.; Hürlimann, Sylvia; Hill, Michael G.
  • Journal of the American Chemical Society, Vol. 138, Issue 48
  • DOI: 10.1021/jacs.6b10538

Chiral Selective Chemistry Induced by Natural Selection of Spin-Polarized Electrons
journal, May 2015

  • Rosenberg, Richard A.; Mishra, Debabrata; Naaman, Ron
  • Angewandte Chemie International Edition, Vol. 54, Issue 25
  • DOI: 10.1002/anie.201501678

Analyzing Spin Selectivity in DNA-Mediated Charge Transfer via Fluorescence Microscopy
journal, July 2017


Spin Specific Electron Conduction through DNA Oligomers
journal, November 2011

  • Xie, Zouti; Markus, Tal Z.; Cohen, Sidney R.
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl2021637

A Silicon‐Based Room Temperature Spin Source without Magnetic Layers
journal, August 2016

  • Kettner, Matthias; Bhowmick, Deb Kumar; Bartsch, Manfred
  • Advanced Materials Interfaces, Vol. 3, Issue 20
  • DOI: 10.1002/admi.201600595

Spin Filtering in Electron Transport Through Chiral Oligopeptides
journal, January 2015

  • Kettner, M.; Göhler, B.; Zacharias, H.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 26
  • DOI: 10.1021/jp509974z

A chiral-based magnetic memory device without a permanent magnet
journal, August 2013

  • Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3256

Non-magnetic organic/inorganic spin injector at room temperature
journal, December 2014

  • Mathew, Shinto P.; Mondal, Prakash Chandra; Moshe, Hagay
  • Applied Physics Letters, Vol. 105, Issue 24
  • DOI: 10.1063/1.4904941

Magnetic Nanoplatelet-Based Spin Memory Device Operating at Ambient Temperatures
journal, March 2017

  • Koplovitz, Guy; Primc, Darinka; Ben Dor, Oren
  • Advanced Materials, Vol. 29, Issue 17
  • DOI: 10.1002/adma.201606748

Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field
journal, February 2017

  • Ben Dor, Oren; Yochelis, Shira; Radko, Anna
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14567

Magnetic phase control by an electric field
journal, July 2004

  • Lottermoser, Thomas; Lonkai, Thomas; Amann, Uwe
  • Nature, Vol. 430, Issue 6999
  • DOI: 10.1038/nature02728

Control of magnetism by electric fields
journal, March 2015

  • Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo
  • Nature Nanotechnology, Vol. 10, Issue 3
  • DOI: 10.1038/nnano.2015.22

A new spin on magnetic memories
journal, March 2015

  • Kent, Andrew D.; Worledge, Daniel C.
  • Nature Nanotechnology, Vol. 10, Issue 3
  • DOI: 10.1038/nnano.2015.24

Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules
journal, April 2015


A new approach towards spintronics–spintronics with no magnets
journal, February 2017

  • Michaeli, Karen; Varade, Vaibhav; Naaman, Ron
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 10
  • DOI: 10.1088/1361-648X/aa54a4

Lateral drag of spin coherence in gallium arsenide
journal, January 1999

  • Kikkawa, J. M.; Awschalom, D. D.
  • Nature, Vol. 397, Issue 6715
  • DOI: 10.1038/16420

Long electron spin memory times in gallium arsenide
journal, August 2001

  • Dzhioev, R. I.; Zakharchenya, B. P.; Korenev, V. L.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 74, Issue 3
  • DOI: 10.1134/1.1410226

Manipulation of the Spin Memory of Electrons in n -GaAs
journal, June 2002


Molecular enhancement of ferromagnetism in GaAs∕GaMnAs heterostructures
journal, September 2006

  • Carmeli, Itai; Bloom, Francisco; Gwinn, E. G.
  • Applied Physics Letters, Vol. 89, Issue 11
  • DOI: 10.1063/1.2236935

Anomalous Hall effect
journal, May 2010


Crossover Behavior of the Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets
journal, August 2007


Spin-dependent phenomena and device concepts explored in (Ga,Mn)As
journal, July 2014


Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells
journal, January 2011


Long-range and high-speed electronic spin-transport at a GaAs/AlGaAs semiconductor interface
journal, March 2016

  • Nádvorník, L.; Němec, P.; Janda, T.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep22901

Optical investigation of electrical spin injection into an inverted two-dimensional electron gas structure
journal, January 2017


Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors
journal, February 1997


Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons
journal, October 1954


A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model
journal, July 1956

  • Kasuya, Tadao
  • Progress of Theoretical Physics, Vol. 16, Issue 1
  • DOI: 10.1143/PTP.16.45

Magnetic Properties of Cu-Mn Alloys
journal, June 1957


Ferromagnetic semiconductors: moving beyond (Ga,Mn)As
journal, March 2005

  • MacDonald, A. H.; Schiffer, P.; Samarth, N.
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1325

A ten-year perspective on dilute magnetic semiconductors and oxides
journal, November 2010


Emergent nanoscale superparamagnetism at oxide interfaces
journal, August 2016

  • Anahory, Y.; Embon, L.; Li, C. J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12566

High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks
journal, January 2017

  • Li, Wenbin; Sun, Lei; Qi, Jingshan
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05080H

Theory of helical magnetic structures and phase transitions in MnSi and FeGe
journal, November 1980


Metallic quantum ferromagnets
journal, May 2016


Quantum spin liquids: a review
journal, November 2016


Unusual Hall Effect Anomaly in MnSi under Pressure
journal, May 2009


Skyrmion Lattice in a Chiral Magnet
journal, February 2009


Real-space observation of a two-dimensional skyrmion crystal
journal, June 2010


Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
journal, December 2010

  • Yu, X. Z.; Kanazawa, N.; Onose, Y.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2916

Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
journal, October 2013


Works referencing / citing this record:

Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions
journal, September 2019

  • Naaman, Ron; Waldeck, David H.; Paltiel, Yossi
  • Applied Physics Letters, Vol. 115, Issue 13
  • DOI: 10.1063/1.5125034