DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics

Abstract

Copper Vanadium Sulfide (Cu3VS4), also known as sulvanite, has recently emerged as a suitable absorber material for thin film photovoltaics. The synthesis of Cu3VS4 nanocrystals via a rapid solvothermal route is reported for the first time. The phase purity of the Cu3VS4 nanocrystals has been confirmed by X-ray powder diffraction (XRD) and Raman spectroscopy, while the nanoparticle size, of about 10 nm, was evaluated by transmission electron microscopy (TEM). Successful ligand exchange with sulfide, an inorganic ligand, demonstrated that the nanoparticles are amenable to surface modifications, key element in solution processing. Further annealing of as-synthesized nanocrystals under a sulfur/argon atmosphere at 600 °C, rendered highly crystalline Cu3VS4 powders exhibiting an impurity that could be potentially mitigated by annealing temperature optimization. Furthermore, Cu3VS4, formed solely from Earth-abundant elements, could provide an inexpensive, reliable approach to fabricating solution processed thin film photovoltaic absorbers.

Authors:
 [1];  [2];  [1];  [3];  [4]
  1. Delaware State Univ., Dover, DE (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Univ. of Delaware, Newark, DE (United States)
  4. Delaware State Univ., Dover, DE (United States); Univ. of Delaware, Newark, DE (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1416342
Alternate Identifier(s):
OSTI ID: 1549317
Grant/Contract Number:  
AC02-76SF00515; 1435716; 1535876; EE0006322
Resource Type:
Accepted Manuscript
Journal Name:
Materials Letters
Additional Journal Information:
Journal Volume: 211; Journal Issue: C; Journal ID: ISSN 0167-577X
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Nanocrystalline materials; Nanoparticles; Colloidal processing; Thin films; Solar energy materials; Electronic materials

Citation Formats

Chen, Ching -Chin, Stone, Kevin H., Lai, Cheng -Yu, Dobson, Kevin D., and Radu, Daniela. Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics. United States: N. p., 2017. Web. doi:10.1016/j.matlet.2017.09.063.
Chen, Ching -Chin, Stone, Kevin H., Lai, Cheng -Yu, Dobson, Kevin D., & Radu, Daniela. Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics. United States. https://doi.org/10.1016/j.matlet.2017.09.063
Chen, Ching -Chin, Stone, Kevin H., Lai, Cheng -Yu, Dobson, Kevin D., and Radu, Daniela. Thu . "Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics". United States. https://doi.org/10.1016/j.matlet.2017.09.063. https://www.osti.gov/servlets/purl/1416342.
@article{osti_1416342,
title = {Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics},
author = {Chen, Ching -Chin and Stone, Kevin H. and Lai, Cheng -Yu and Dobson, Kevin D. and Radu, Daniela},
abstractNote = {Copper Vanadium Sulfide (Cu3VS4), also known as sulvanite, has recently emerged as a suitable absorber material for thin film photovoltaics. The synthesis of Cu3VS4 nanocrystals via a rapid solvothermal route is reported for the first time. The phase purity of the Cu3VS4 nanocrystals has been confirmed by X-ray powder diffraction (XRD) and Raman spectroscopy, while the nanoparticle size, of about 10 nm, was evaluated by transmission electron microscopy (TEM). Successful ligand exchange with sulfide, an inorganic ligand, demonstrated that the nanoparticles are amenable to surface modifications, key element in solution processing. Further annealing of as-synthesized nanocrystals under a sulfur/argon atmosphere at 600 °C, rendered highly crystalline Cu3VS4 powders exhibiting an impurity that could be potentially mitigated by annealing temperature optimization. Furthermore, Cu3VS4, formed solely from Earth-abundant elements, could provide an inexpensive, reliable approach to fabricating solution processed thin film photovoltaic absorbers.},
doi = {10.1016/j.matlet.2017.09.063},
journal = {Materials Letters},
number = C,
volume = 211,
place = {United States},
year = {Thu Sep 21 00:00:00 EDT 2017},
month = {Thu Sep 21 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Interface Engineering of Inorganic Thin-Film Solar Cells - Materials-Science Challenges for Advanced Physical Concepts
journal, June 2009

  • Jaegermann, Wolfram; Klein, Andreas; Mayer, Thomas
  • Advanced Materials, Vol. 21, Issue 42
  • DOI: 10.1002/adma.200802457

Solar cell efficiency tables (version 47): Solar cell efficiency tables
journal, November 2015

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 24, Issue 1
  • DOI: 10.1002/pip.2728

Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity: Effects of indium and tellurium scarcity
journal, June 2012

  • Candelise, Chiara; Winskel, Mark; Gross, Robert
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 6
  • DOI: 10.1002/pip.2216

High-Efficiency Solution-Processed Cu 2 ZnSn(S,Se) 4 Thin-Film Solar Cells Prepared from Binary and Ternary Nanoparticles
journal, September 2012

  • Cao, Yanyan; Denny, Michael S.; Caspar, Jonathan V.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja3057985

Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals
journal, December 2010

  • Guo, Qijie; Ford, Grayson M.; Yang, Wei-Chang
  • Journal of the American Chemical Society, Vol. 132, Issue 49
  • DOI: 10.1021/ja108427b

Spatial Element Distribution Control in a Fully Solution-Processed Nanocrystals-Based 8.6% Cu 2 ZnSn(S,Se) 4 Device
journal, August 2014

  • Hsu, Wan-Ching; Zhou, Huanping; Luo, Song
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn503992e

Cu2ZnSnS4 thin film solar cells
journal, June 2005


Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
journal, November 2013

  • Wang, Wei; Winkler, Mark T.; Gunawan, Oki
  • Advanced Energy Materials, Vol. 4, Issue 7, Article No. 1301465
  • DOI: 10.1002/aenm.201301465

Cu2ZnSnS4-type thin film solar cells using abundant materials
journal, May 2007


Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell: Characteristics of a 10.1% efficient kesterite solar cell
journal, September 2011

  • Barkhouse, D. Aaron R.; Gunawan, Oki; Gokmen, Tayfun
  • Progress in Photovoltaics: Research and Applications, Vol. 20, Issue 1
  • DOI: 10.1002/pip.1160

Why are kesterite solar cells not 20% efficient?
journal, May 2013


Mapping and comparison of the shortcomings of kesterite absorber layers, and how they could affect industrial scalability
journal, July 2017

  • Aninat, Remi; Quesada-Rubio, Luis-Enrique; Sanchez-Cortezon, Emilio
  • Thin Solid Films, Vol. 633
  • DOI: 10.1016/j.tsf.2016.10.007

The electronic structure of sulvanite structured semiconductors Cu 3 MCh 4 (M = V, Nb, Ta; Ch = S, Se, Te): prospects for optoelectronic applications
journal, January 2015

  • Kehoe, Aoife B.; Scanlon, David O.; Watson, Graeme W.
  • Journal of Materials Chemistry C, Vol. 3, Issue 47
  • DOI: 10.1039/C5TC02760H

Investigation of the vibronic properties of Cu 3 V S 4 , Cu 3 Nb S 4 , and Cu 3 Ta S 4 compounds
journal, June 1981


Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly
journal, July 2011

  • Jasieniak, Jacek; MacDonald, Brandon I.; Watkins, Scott E.
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201282v

High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces
journal, January 2014

  • Panthani, Matthew G.; Kurley, J. Matthew; Crisp, Ryan W.
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl403912w

CuInSe 2 Quantum Dot Solar Cells with High Open-Circuit Voltage
journal, June 2013

  • Panthani, Matthew G.; Stolle, C. Jackson; Reid, Dariya K.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 12
  • DOI: 10.1021/jz4010015

Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution
journal, October 2005

  • Gur, Ilan; Fromer, Neil A.; Geier, Michael L.
  • Science, Vol. 310, Issue 5747, p. 462-465
  • DOI: 10.1126/science.1117908

Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS 2 Nanocrystals
journal, July 2009

  • Wadia, Cyrus; Wu, Yue; Gul, Sheraz
  • Chemistry of Materials, Vol. 21, Issue 13
  • DOI: 10.1021/cm901273v

Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films
journal, May 2017

  • Lin, Qianglu; Yun, Hyeong Jin; Liu, Wenyong
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01327

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Works referencing / citing this record:

First principles study on new half-metallic ferromagnetic ternary zinc-based sulfide and telluride (Zn 3 VS 4 and Zn 3 VTe 4 )
journal, April 2019

  • Erkişi, Aytaç; Yildiz, Buğra; Demir, Kadir
  • Materials Research Express, Vol. 6, Issue 7
  • DOI: 10.1088/2053-1591/ab13e0