DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics

Abstract

Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>104 cm–1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >104 cm–1, as well as a hole concentration of 1015 cm–3. Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [3]; ORCiD logo [3]
  1. Univ. of Wisconsin-Stevens Point, Stevens Point, WI (United States)
  2. Northwestern Univ., Evanston, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1356821
Grant/Contract Number:  
AC02-06CH11357; SC0001059
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 9; Journal Issue: 5; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ternary metal sulfide; copper antimony sulfide; CuSbS2; atomic layer deposition; photovoltaics; thin film; thin film solar cell

Citation Formats

Riha, Shannon C., Koegel, Alexandra A., Emery, Jonathan D., Pellin, Michael J., and Martinson, Alex B. F. Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics. United States: N. p., 2017. Web. doi:10.1021/acsami.6b13033.
Riha, Shannon C., Koegel, Alexandra A., Emery, Jonathan D., Pellin, Michael J., & Martinson, Alex B. F. Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics. United States. https://doi.org/10.1021/acsami.6b13033
Riha, Shannon C., Koegel, Alexandra A., Emery, Jonathan D., Pellin, Michael J., and Martinson, Alex B. F. Tue . "Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics". United States. https://doi.org/10.1021/acsami.6b13033. https://www.osti.gov/servlets/purl/1356821.
@article{osti_1356821,
title = {Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics},
author = {Riha, Shannon C. and Koegel, Alexandra A. and Emery, Jonathan D. and Pellin, Michael J. and Martinson, Alex B. F.},
abstractNote = {Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>104 cm–1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >104 cm–1, as well as a hole concentration of 1015 cm–3. Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.},
doi = {10.1021/acsami.6b13033},
journal = {ACS Applied Materials and Interfaces},
number = 5,
volume = 9,
place = {United States},
year = {Tue Jan 24 00:00:00 EST 2017},
month = {Tue Jan 24 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solar Energy Conversion Toward 1 Terawatt
journal, April 2008

  • Ginley, David; Green, Martin A.; Collins, Reuben
  • MRS Bulletin, Vol. 33, Issue 4
  • DOI: 10.1557/mrs2008.71

Solar photovoltaic electricity: Current status and future prospects
journal, August 2011


The design and fabrication of thin-film CdS/Cu 2 S cells of 9.15-percent conversion efficiency
journal, April 1980

  • Bragagnolo, J. A.; Barnett, A. M.; Phillips, J. E.
  • IEEE Transactions on Electron Devices, Vol. 27, Issue 4
  • DOI: 10.1109/T-ED.1980.19917

Thin‐film polycrystalline Cu 2 S/Cd 1− x Zn x S solar cells of 10% efficiency
journal, June 1981

  • Hall, R. B.; Birkmire, R. W.; Phillips, J. E.
  • Applied Physics Letters, Vol. 38, Issue 11
  • DOI: 10.1063/1.92184

The design and fabrication of high efficiency thin film CdS/Cu2S solar cells
journal, October 1979


Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells
journal, July 1999


Compositional investigation of potassium doped Cu(In,Ga)Se 2 solar cells with efficiencies up to 20.8% : Compositional investigation of potassium doped Cu(In,Ga)Se
journal, February 2014

  • Jackson, Philip; Hariskos, Dimitrios; Wuerz, Roland
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 8, Issue 3
  • DOI: 10.1002/pssr.201409040

CIGS Cells and Modules With High Efficiency on Glass and Flexible Substrates
journal, January 2014


Improved Photocurrent in Cu(In,Ga)Se 2 Solar Cells: From 20.8% to 21.7% Efficiency with CdS Buffer and 21.0% Cd-Free
journal, September 2015

  • Friedlmeier, Theresa Magorian; Jackson, Philip; Bauer, Andreas
  • IEEE Journal of Photovoltaics, Vol. 5, Issue 5
  • DOI: 10.1109/JPHOTOV.2015.2458039

Properties of Cu(In,Ga)Se 2 solar cells with new record efficiencies up to 21.7% : Properties of Cu(In,Ga)Se
journal, December 2014

  • Jackson, Philip; Hariskos, Dimitrios; Wuerz, Roland
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 9, Issue 1
  • DOI: 10.1002/pssr.201409520

Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
journal, November 2013

  • Wang, Wei; Winkler, Mark T.; Gunawan, Oki
  • Advanced Energy Materials, Vol. 4, Issue 7, Article No. 1301465
  • DOI: 10.1002/aenm.201301465

Self-regulated growth and tunable properties of CuSbS2 solar absorbers
journal, January 2015


Accelerated development of CuSbS 2 thin film photovoltaic device prototypes : Accelerated development of CuSbS
journal, February 2016

  • Welch, Adam W.; Baranowski, Lauryn L.; Zawadzki, Pawel
  • Progress in Photovoltaics: Research and Applications, Vol. 24, Issue 7
  • DOI: 10.1002/pip.2735

Synthesis of Copper–Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells
journal, August 2015


Mono-, Few-, and Multiple Layers of Copper Antimony Sulfide (CuSbS 2 ): A Ternary Layered Sulfide
journal, January 2014

  • Ramasamy, Karthik; Sims, Hunter; Butler, William H.
  • Journal of the American Chemical Society, Vol. 136, Issue 4
  • DOI: 10.1021/ja411748g

CuSbS 2 as a Promising Earth-Abundant Photovoltaic Absorber Material: A Combined Theoretical and Experimental Study
journal, May 2014

  • Yang, Bo; Wang, Liang; Han, Jun
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm500516v

Thin films of copper antimony sulfide: A photovoltaic absorber material
journal, January 2015


Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack
journal, January 2014


Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties
journal, January 2015

  • Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.
  • Nanoscale, Vol. 7, Issue 29
  • DOI: 10.1039/C5NR02080H

Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing
journal, June 2012

  • van Delft, J. A.; Garcia-Alonso, D.; Kessels, W. M. M.
  • Semiconductor Science and Technology, Vol. 27, Issue 7
  • DOI: 10.1088/0268-1242/27/7/074002

Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition
journal, January 2011

  • Bakke, Jonathan R.; Pickrahn, Katie L.; Brennan, Thomas P.
  • Nanoscale, Vol. 3, Issue 9
  • DOI: 10.1039/c1nr10349k

Atomic Layer Deposition of Metal Sulfide Materials
journal, January 2015

  • Dasgupta, Neil P.; Meng, Xiangbo; Elam, Jeffrey W.
  • Accounts of Chemical Research, Vol. 48, Issue 2, p. 341-348
  • DOI: 10.1021/ar500360d

Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide
journal, January 2015

  • Sinha, Soumyadeep; Mahuli, Neha; Sarkar, Shaibal K.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 33, Issue 1
  • DOI: 10.1116/1.4903951

Interfaces and Composition Profiles in Metal–Sulfide Nanolayers Synthesized by Atomic Layer Deposition
journal, January 2013

  • Thimsen, Elijah; Baryshev, Sergey V.; Martinson, Alex B. F.
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm3027225

Atomic Layer Deposition of the Quaternary Chalcogenide Cu 2 ZnSnS 4
journal, August 2012

  • Thimsen, Elijah; Riha, Shannon C.; Baryshev, Sergey V.
  • Chemistry of Materials, Vol. 24, Issue 16
  • DOI: 10.1021/cm3015463

Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications
journal, January 2016

  • Riha, Shannon C.; Koegel, Alexandra A.; Meng, Xiangbo
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 4
  • DOI: 10.1021/acsami.5b11075

Ion Exchange in Ultrathin Films of Cu 2 S and ZnS under Atomic Layer Deposition Conditions
journal, October 2011

  • Thimsen, Elijah; Peng, Qing; Martinson, Alex B. F.
  • Chemistry of Materials, Vol. 23, Issue 20
  • DOI: 10.1021/cm201412p

Design of an atomic layer deposition reactor for hydrogen sulfide compatibility
journal, April 2010

  • Dasgupta, Neil P.; Mack, James F.; Langston, Michael C.
  • Review of Scientific Instruments, Vol. 81, Issue 4, Article No. 044102
  • DOI: 10.1063/1.3384349

Design and implementation of an integral wall-mounted quartz crystal microbalance for atomic layer deposition
journal, September 2012

  • Riha, Shannon C.; Libera, Joseph A.; Elam, Jeffrey W.
  • Review of Scientific Instruments, Vol. 83, Issue 9
  • DOI: 10.1063/1.4753935

Earth abundant CuSbS 2 thin films solution processed from thiol–amine mixtures
journal, January 2016

  • McCarthy, Carrie L.; Cottingham, Patrick; Abuyen, Karla
  • Journal of Materials Chemistry C, Vol. 4, Issue 26
  • DOI: 10.1039/C6TC02117D

Recent progress in organic–inorganic hybrid solar cells
journal, January 2013

  • Fan, Xia; Zhang, Mingliang; Wang, Xiaodong
  • Journal of Materials Chemistry A, Vol. 1, Issue 31
  • DOI: 10.1039/c3ta11200d

Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals
journal, June 2016

  • Bernechea, María; Miller, Nichole Cates; Xercavins, Guillem
  • Nature Photonics, Vol. 10, Issue 8
  • DOI: 10.1038/nphoton.2016.108

Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells
journal, January 2015

  • Cheng, Jiaqi; Xie, Fengxian; Liu, Yongsheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 47
  • DOI: 10.1039/C5TA06878A

Photoexcited Carrier Dynamics of Cu 2 S Thin Films
journal, November 2014

  • Riha, Shannon C.; Schaller, Richard D.; Gosztola, David J.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 22
  • DOI: 10.1021/jz5021873

Works referencing / citing this record:

Phase pure CuSbS2 thin films by heat treatment of electrodeposited Sb2S3/Cu layers
journal, January 2020

  • García, R. G. Avilez; Cerdán-Pasarán, Andrea; Perez, E. A. Rueda
  • Journal of Solid State Electrochemistry, Vol. 24, Issue 1
  • DOI: 10.1007/s10008-019-04475-3

Copper antimony sulfide thin films for visible to near infrared photodetector applications
journal, January 2018

  • Vinayakumar, V.; Shaji, S.; Avellaneda, D.
  • RSC Advances, Vol. 8, Issue 54
  • DOI: 10.1039/c8ra05662e

Band gap temperature-dependence and exciton-like state in copper antimony sulphide, CuSbS 2
journal, August 2018

  • Birkett, Max; Savory, Christopher N.; Rajpalke, Mohana K.
  • APL Materials, Vol. 6, Issue 8
  • DOI: 10.1063/1.5030207

Copper–antimony and copper–bismuth chalcogenides—Research opportunities and review for solar photovoltaics
journal, January 2018


Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System
journal, June 2019

  • Ebhota, Williams S.; Jen, Tien-Chien
  • International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 7, Issue 1
  • DOI: 10.1007/s40684-019-00101-9

Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells
journal, November 2019

  • Wan, Lei; Guo, Xu; Fang, Yingcui
  • Journal of Materials Science: Materials in Electronics, Vol. 30, Issue 24
  • DOI: 10.1007/s10854-019-02531-2

New development of atomic layer deposition: processes, methods and applications
journal, May 2019

  • Oviroh, Peter Ozaveshe; Akbarzadeh, Rokhsareh; Pan, Dongqing
  • Science and Technology of Advanced Materials, Vol. 20, Issue 1
  • DOI: 10.1080/14686996.2019.1599694

Development of sputtered CuSbS 2 thin films grown by sequential deposition of binary sulfides
journal, April 2018

  • Medina-Montes, M. I.; Vieyra-Brito, O.; Mathews, N. R.
  • Semiconductor Science and Technology, Vol. 33, Issue 5
  • DOI: 10.1088/1361-6641/aab815

2D Ternary Chalcogenides
journal, May 2018


Study of CuSbS 2 thin films nanofibers prepared by spin coating technique using ultra pure water as a solvent
journal, June 2019


Multimodal characterization of solution-processed Cu 3 SbS 4 absorbers for thin film solar cells
journal, January 2018

  • Albuquerque, Gustavo H.; Kim, Ki-Joong; Lopez, Jonathon I.
  • Journal of Materials Chemistry A, Vol. 6, Issue 18
  • DOI: 10.1039/c8ta00001h