DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

Abstract

Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiOxHy clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.

Authors:
ORCiD logo [1];  [2];  [2];  [2]; ORCiD logo [1];  [3];  [4]; ORCiD logo [5]; ORCiD logo [3];  [6];  [3];  [7];  [1]; ORCiD logo [8]; ORCiD logo [5];  [9];  [3];  [3]; ORCiD logo [10]; ORCiD logo [2] more »; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1] « less
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  2. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry, Minnesota Supercomputing Inst. and Chemical Theory Center
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering
  5. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  6. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Science Directorate
  7. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
  8. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry
  9. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical and Computational Science Directorate; Univ. of Washington, Seattle, WA (United States). Dept. of Materials Science and Engineering
  10. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Inst. for Integrated Catalysis; Technische Univ. Munchen, Garching (Germany). Dept. of Chemistry and Catalysis Research Inst.
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1398808
Grant/Contract Number:  
AC02-06CH11357; SC0012702; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 30; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Platero-Prats, Ana E., League, Aaron B., Bernales, Varinia, Ye, Jingyun, Gallington, Leighanne C., Vjunov, Aleksei, Schweitzer, Neil M., Li, Zhanyong, Zheng, Jian, Mehdi, B. Layla, Stevens, Andrew J., Dohnalkova, Alice, Balasubramanian, Mahalingam, Farha, Omar K., Hupp, Joseph T., Browning, Nigel D., Fulton, John L., Camaioni, Donald M., Lercher, Johannes A., Truhlar, Donald G., Gagliardi, Laura, Cramer, Christopher J., and Chapman, Karena W. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. United States: N. p., 2017. Web. doi:10.1021/jacs.7b04997.
Platero-Prats, Ana E., League, Aaron B., Bernales, Varinia, Ye, Jingyun, Gallington, Leighanne C., Vjunov, Aleksei, Schweitzer, Neil M., Li, Zhanyong, Zheng, Jian, Mehdi, B. Layla, Stevens, Andrew J., Dohnalkova, Alice, Balasubramanian, Mahalingam, Farha, Omar K., Hupp, Joseph T., Browning, Nigel D., Fulton, John L., Camaioni, Donald M., Lercher, Johannes A., Truhlar, Donald G., Gagliardi, Laura, Cramer, Christopher J., & Chapman, Karena W. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. United States. https://doi.org/10.1021/jacs.7b04997
Platero-Prats, Ana E., League, Aaron B., Bernales, Varinia, Ye, Jingyun, Gallington, Leighanne C., Vjunov, Aleksei, Schweitzer, Neil M., Li, Zhanyong, Zheng, Jian, Mehdi, B. Layla, Stevens, Andrew J., Dohnalkova, Alice, Balasubramanian, Mahalingam, Farha, Omar K., Hupp, Joseph T., Browning, Nigel D., Fulton, John L., Camaioni, Donald M., Lercher, Johannes A., Truhlar, Donald G., Gagliardi, Laura, Cramer, Christopher J., and Chapman, Karena W. Tue . "Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires". United States. https://doi.org/10.1021/jacs.7b04997. https://www.osti.gov/servlets/purl/1398808.
@article{osti_1398808,
title = {Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires},
author = {Platero-Prats, Ana E. and League, Aaron B. and Bernales, Varinia and Ye, Jingyun and Gallington, Leighanne C. and Vjunov, Aleksei and Schweitzer, Neil M. and Li, Zhanyong and Zheng, Jian and Mehdi, B. Layla and Stevens, Andrew J. and Dohnalkova, Alice and Balasubramanian, Mahalingam and Farha, Omar K. and Hupp, Joseph T. and Browning, Nigel D. and Fulton, John L. and Camaioni, Donald M. and Lercher, Johannes A. and Truhlar, Donald G. and Gagliardi, Laura and Cramer, Christopher J. and Chapman, Karena W.},
abstractNote = {Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiOxHy clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.},
doi = {10.1021/jacs.7b04997},
journal = {Journal of the American Chemical Society},
number = 30,
volume = 139,
place = {United States},
year = {Tue Jul 11 00:00:00 EDT 2017},
month = {Tue Jul 11 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 65 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Metal Organic Framework Catalysis: Quo vadis ?
journal, December 2013

  • Gascon, Jorge; Corma, Avelino; Kapteijn, Freek
  • ACS Catalysis, Vol. 4, Issue 2, p. 361-378
  • DOI: 10.1021/cs400959k

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Destruction of chemical warfare agents using metal–organic frameworks
journal, March 2015

  • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4238

Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature
journal, November 2016


Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
journal, February 2016

  • Li, Zhanyong; Schweitzer, Neil M.; League, Aaron B.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12515

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66
journal, March 2016

  • Platero-Prats, Ana E.; Mavrandonakis, Andreas; Gallington, Leighanne C.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00069

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach
journal, February 2016


Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions
journal, October 2016

  • Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b08711

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

Modelling the silica glass structure by the Rietveld method
journal, April 1995


Crystallographic Computing System JANA2006: General features
journal, January 2014

  • Petříček, Václav; Dušek, Michal; Palatinus, Lukáš
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2014-1737

Generation and applications of structure envelopes for porous metal–organic frameworks
journal, February 2013

  • Yakovenko, Andrey A.; Reibenspies, Joseph H.; Bhuvanesh, Nattamai
  • Journal of Applied Crystallography, Vol. 46, Issue 2
  • DOI: 10.1107/S0021889812050935

Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures
journal, January 2009

  • McCusker, Lynne B.; Baerlocher, Christian
  • Chemical Communications, Issue 12
  • DOI: 10.1039/b821716e

Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density
journal, October 2014

  • Yakovenko, Andrey A.; Wei, Zhangwen; Wriedt, Mario
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg500525g

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


The MRCAT insertion device beamline at the Advanced Photon Source
conference, January 2000

  • Segre, C. U.
  • The 11th US national synchrotron radiation instrumentation conference (SRI99), AIP Conference Proceedings
  • DOI: 10.1063/1.1291825

Genesis and Evolution of Surface Species during Pt Atomic Layer Deposition on Oxide Supports Characterized by in Situ XAFS Analysis and Water−Gas Shift Reaction
journal, May 2010

  • Setthapun, Worajit; Williams, W. Damion; Kim, Seung Min
  • The Journal of Physical Chemistry C, Vol. 114, Issue 21
  • DOI: 10.1021/jp911178m

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Parameter-free calculations of X-ray spectra with FEFF9
journal, January 2010

  • Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b926434e

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Design of Lewis Pair-Functionalized Metal Organic Frameworks for CO 2 Hydrogenation
journal, March 2015


Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions
journal, September 2012

  • Fulton, John L.; Bylaska, Eric J.; Bogatko, Stuart
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 18
  • DOI: 10.1021/jz3008497

State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media
journal, September 2015

  • Chase, Zizwe A.; Kasakov, Stanislav; Shi, Hui
  • Chemistry - A European Journal, Vol. 21, Issue 46
  • DOI: 10.1002/chem.201502723

Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units
journal, February 2005

  • Rosi, Nathaniel L.; Kim, Jaheon; Eddaoudi, Mohamed
  • Journal of the American Chemical Society, Vol. 127, Issue 5, p. 1504-1518
  • DOI: 10.1021/ja045123o

Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
journal, February 2008


Correlated defect nanoregions in a metal–organic framework
journal, June 2014

  • Cliffe, Matthew J.; Wan, Wei; Zou, Xiaodong
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5176

Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis
journal, June 2012

  • Du, Pingwu; Kokhan, Oleksandr; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja303826a

Works referencing / citing this record:

A sub-sampled approach to extremely low-dose STEM
journal, January 2018

  • Stevens, A.; Luzi, L.; Yang, H.
  • Applied Physics Letters, Vol. 112, Issue 4
  • DOI: 10.1063/1.5016192

Molecular Vise Approach to Create Metal-Binding Sites in MOFs and Detection of Biomarkers
journal, May 2018


Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution
journal, May 2019


NanoMOFs: little crystallites for substantial applications
journal, January 2018

  • Majewski, M. B.; Noh, H.; Islamoglu, T.
  • Journal of Materials Chemistry A, Vol. 6, Issue 17
  • DOI: 10.1039/c8ta02132e

Molybdenum (VI)‐functionalized UiO‐66 provides an efficient heterogeneous nanocatalyst in oxidation reactions
journal, August 2019

  • Afzali, Niloufar; Kardanpour, Reihaneh; Zadehahmadi, Farnaz
  • Applied Organometallic Chemistry, Vol. 33, Issue 11
  • DOI: 10.1002/aoc.5225

Insights into the water adsorption mechanism in the chemically stable zirconium-based MOF DUT-67 – a prospective material for adsorption-driven heat transformations
journal, January 2019

  • Bon, Volodymyr; Senkovska, Irena; Evans, Jack D.
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta00825j

From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy
journal, August 2019

  • Hanna, Lauren; Lockard, Jenny V.
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 48
  • DOI: 10.1088/1361-648x/ab38da

Stable metal–organic frameworks as a host platform for catalysis and biomimetics
journal, January 2018

  • Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina
  • Chemical Communications, Vol. 54, Issue 34
  • DOI: 10.1039/c7cc09173g

Molecular Vise Approach to Create Metal-Binding Sites in MOFs and Detection of Biomarkers
journal, May 2018

  • Wang, Yang; Liu, Qi; Zhang, Qin
  • Angewandte Chemie International Edition, Vol. 57, Issue 24
  • DOI: 10.1002/anie.201803201