DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

Abstract

Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Using difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clustersmore » are active for propane ODH after thermal activation under O2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [4]
  1. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  3. Northwestern Univ., Evanston, IL (United States). Dept. of Chemical and Biological Engineering
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOD; ational Science Foundation (NSF); Ministry of Economy and Knowledge from the Catalan Government; Ministry of Science and Technology (Taiwan)
OSTI Identifier:
1419945
Grant/Contract Number:  
AC02-06CH11357; SC0012702
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 42; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Li, Zhanyong, Peters, Aaron W., Platero-Prats, Ana E., Liu, Jian, Kung, Chung-Wei, Noh, Hyunho, DeStefano, Matthew R., Schweitzer, Neil M., Chapman, Karena W., Hupp, Joseph T., and Farha, Omar K.. Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. United States: N. p., 2017. Web. doi:10.1021/jacs.7b09365.
Li, Zhanyong, Peters, Aaron W., Platero-Prats, Ana E., Liu, Jian, Kung, Chung-Wei, Noh, Hyunho, DeStefano, Matthew R., Schweitzer, Neil M., Chapman, Karena W., Hupp, Joseph T., & Farha, Omar K.. Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. United States. https://doi.org/10.1021/jacs.7b09365
Li, Zhanyong, Peters, Aaron W., Platero-Prats, Ana E., Liu, Jian, Kung, Chung-Wei, Noh, Hyunho, DeStefano, Matthew R., Schweitzer, Neil M., Chapman, Karena W., Hupp, Joseph T., and Farha, Omar K.. Wed . "Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane". United States. https://doi.org/10.1021/jacs.7b09365. https://www.osti.gov/servlets/purl/1419945.
@article{osti_1419945,
title = {Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane},
author = {Li, Zhanyong and Peters, Aaron W. and Platero-Prats, Ana E. and Liu, Jian and Kung, Chung-Wei and Noh, Hyunho and DeStefano, Matthew R. and Schweitzer, Neil M. and Chapman, Karena W. and Hupp, Joseph T. and Farha, Omar K.},
abstractNote = {Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Using difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)},
doi = {10.1021/jacs.7b09365},
journal = {Journal of the American Chemical Society},
number = 42,
volume = 139,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 94 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experimental and modeling study of thermal and catalytic cracking of n-decane
journal, November 2014


Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides
journal, August 2014

  • Sattler, Jesper J. H. B.; Ruiz-Martinez, Javier; Santillan-Jimenez, Eduardo
  • Chemical Reviews, Vol. 114, Issue 20
  • DOI: 10.1021/cr5002436

Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts
journal, September 2014

  • Carrero, C. A.; Schloegl, R.; Wachs, I. E.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5003417

Oxidative dehydrogenation of ethane and propane: How far from commercial implementation?
journal, September 2007


Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts
journal, December 2016


Catalytic oxidative dehydrogenation of propane over Mg–V/Mo oxides
journal, April 2004


Structure and Catalytic Properties of Supported Vanadium Oxides: Support Effects on Oxidative Dehydrogenation Reactions
journal, January 1999

  • Khodakov, Andrei; Olthof, Bryan; Bell, Alexis T.
  • Journal of Catalysis, Vol. 181, Issue 2
  • DOI: 10.1006/jcat.1998.2295

Alkali Effects on Molybdenum Oxide Catalysts for the Oxidative Dehydrogenation of Propane
journal, October 2000

  • Chen, Kaidong; Xie, Shuibo; Bell, Alexis T.
  • Journal of Catalysis, Vol. 195, Issue 2
  • DOI: 10.1006/jcat.2000.3025

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Bottom-up construction of a superstructure in a porous uranium-organic crystal
journal, April 2017

  • Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.
  • Science, Vol. 356, Issue 6338
  • DOI: 10.1126/science.aam7851

Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net
journal, February 2017

  • Chen, Zhijie; Weseliński, Łukasz J.; Adil, Karim
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00219

Hydrogen storage in metal–organic frameworks
journal, January 2009

  • Murray, Leslie J.; Dincă, Mircea; Long, Jeffrey R.
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1294-1314
  • DOI: 10.1039/b802256a

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit
journal, May 2017


Water harvesting from air with metal-organic frameworks powered by natural sunlight
journal, April 2017


A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control
journal, July 2017

  • AbdulHalim, Rasha G.; Bhatt, Prashant M.; Belmabkhout, Youssef
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b04132

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Enantioselective catalysis with homochiral metal–organic frameworks
journal, January 2009

  • Ma, Liqing; Abney, Carter; Lin, Wenbin
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1248-1256
  • DOI: 10.1039/b807083k

Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst
journal, February 2016


Mechanism of Single-Site Molecule-Like Catalytic Ethylene Dimerization in Ni-MFU-4 l
journal, January 2017

  • Metzger, Eric D.; Comito, Robert J.; Hendon, Christopher H.
  • Journal of the American Chemical Society, Vol. 139, Issue 2
  • DOI: 10.1021/jacs.6b10300

Zr-based metal–organic frameworks: design, synthesis, structure, and applications
journal, January 2016

  • Bai, Yan; Dou, Yibo; Xie, Lin-Hua
  • Chemical Society Reviews, Vol. 45, Issue 8
  • DOI: 10.1039/C5CS00837A

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Confinement of Ultrasmall Cu/ZnO x Nanoparticles in Metal–Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO 2
journal, March 2017

  • An, Bing; Zhang, Jingzheng; Cheng, Kang
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.7b00058

Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts
journal, August 2012

  • Feng, Dawei; Gu, Zhi-Yuan; Li, Jian-Rong
  • Angewandte Chemie International Edition, Vol. 51, Issue 41
  • DOI: 10.1002/anie.201204475

Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal–Organic Frameworks
journal, June 2012

  • Morris, William; Volosskiy, Boris; Demir, Selcuk
  • Inorganic Chemistry, Vol. 51, Issue 12, p. 6443-6445
  • DOI: 10.1021/ic300825s

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework
journal, August 2016

  • Peters, Aaron W.; Li, Zhanyong; Farha, Omar K.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 32
  • DOI: 10.1021/acsami.6b04729

Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes
journal, June 2015

  • Yang, Dong; Odoh, Samuel O.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23, p. 7391-7396
  • DOI: 10.1021/jacs.5b02956

Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
journal, October 2015

  • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201505625

An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation
journal, October 2016

  • Noh, Hyunho; Cui, Yuexing; Peters, Aaron W.
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b08898

Production of ultra-deep sulfur-free diesels using a sustainable catalytic system based on UiO-66(Zr)
journal, January 2015

  • Granadeiro, Carlos M.; Ribeiro, Susana O.; Karmaoui, Mohamed
  • Chemical Communications, Vol. 51, Issue 72
  • DOI: 10.1039/C5CC03958D

Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks
journal, December 2016

  • Rimoldi, Martino; Howarth, Ashlee J.; DeStefano, Matthew R.
  • ACS Catalysis, Vol. 7, Issue 2
  • DOI: 10.1021/acscatal.6b02923

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


Stable Metal–Organic Framework-Supported Niobium Catalysts
journal, October 2016


Synthetic Access to Atomically Dispersed Metals in Metal–Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach
journal, February 2016


Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
journal, February 2016

  • Li, Zhanyong; Schweitzer, Neil M.; League, Aaron B.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12515

Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework
journal, July 2017

  • Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b02936

Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires
journal, July 2017

  • Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b04997

Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature
journal, November 2016


Configuring Bonds between First-Row Transition Metals
journal, October 2015


Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density
journal, October 2014

  • Yakovenko, Andrey A.; Wei, Zhangwen; Wriedt, Mario
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg500525g

Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions
journal, October 2016

  • Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b08711

XANES investigation of the Co oxidation state in solution and in cancer cells treated with Co(III) complexes
journal, May 2006


Lewis Acids as Catalysts in Oxidation Reactions:  From Homogeneous to Heterogeneous Systems
journal, October 2002

  • Corma, Avelino; García, Hermenegildo
  • Chemical Reviews, Vol. 102, Issue 10
  • DOI: 10.1021/cr010333u

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides
journal, February 2000

  • Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique
  • The Journal of Physical Chemistry B, Vol. 104, Issue 6
  • DOI: 10.1021/jp9933875

Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation
journal, September 2015

  • Cammarota, Ryan C.; Lu, Connie C.
  • Journal of the American Chemical Society, Vol. 137, Issue 39
  • DOI: 10.1021/jacs.5b08313

Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters
journal, March 2013

  • Tsui, Emily Y.; Tran, Rosalie; Yano, Junko
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1578

Works referencing / citing this record:

3D Enantiomorphic Mg‐Based Metal–Organic Frameworks as Chemical Sensor of Nitrobenzene and Efficient Catalyst for CO 2 Cycloaddition
journal, April 2019

  • Xue, Yun‐Shan; Cheng, Weiwei; Cao, Jia‐Peng
  • Chemistry – An Asian Journal, Vol. 14, Issue 11
  • DOI: 10.1002/asia.201900147

Insights into interface engineering in steam reforming reactions for hydrogen production
journal, January 2019

  • Chen, Sai; Pei, Chunlei; Gong, Jinlong
  • Energy & Environmental Science, Vol. 12, Issue 12
  • DOI: 10.1039/c9ee02808k

The chemistry of multi-component and hierarchical framework compounds
journal, January 2019

  • Feng, Liang; Wang, Kun-Yu; Day, Gregory S.
  • Chemical Society Reviews, Vol. 48, Issue 18
  • DOI: 10.1039/c9cs00250b

Synthesis, characterization, and evaluation of high selectivity mixed molybdenum and vanadium oxide catalysts for oxidative dehydrogenation of propane
journal, February 2019

  • Alasiri, Hassan; Ahmed, Shakeel; Rahman, Faizur
  • The Canadian Journal of Chemical Engineering, Vol. 97, Issue 8
  • DOI: 10.1002/cjce.23472

Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks
journal, January 2018

  • Wang, Hao; Lustig, William P.; Li, Jing
  • Chemical Society Reviews, Vol. 47, Issue 13
  • DOI: 10.1039/c7cs00885f

Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites
journal, October 2018


Hybridization of Pd Nanoparticles with UiO-66(Hf) Metal-Organic Framework and the Effect of Nanostructure on the Catalytic Properties
journal, October 2018

  • Bakuru, Vasudeva Rao; Velaga, Bharath; Peela, Nageswara Rao
  • Chemistry - A European Journal, Vol. 24, Issue 60
  • DOI: 10.1002/chem.201803200

From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy
journal, August 2019

  • Hanna, Lauren; Lockard, Jenny V.
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 48
  • DOI: 10.1088/1361-648x/ab38da

Aerobic Homocoupling of Arylboronic Acids Catalyzed by Regenerable Pd(II)@MIL‐88B‐NH 2 (Cr)
journal, May 2019

  • Valiente, Alejandro; Carrasco, Sergio; Sanz‐Marco, Amparo
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201900556

A sustainable oxidative esterification of thiols with alcohols by a cobalt nanocatalyst supported on doped carbon
journal, January 2018

  • Zhou, Changjian; Tan, Zhenda; Jiang, Huanfeng
  • Green Chemistry, Vol. 20, Issue 9
  • DOI: 10.1039/c8gc00441b

Chemical looping beyond combustion – a perspective
journal, January 2020

  • Zhu, Xing; Imtiaz, Qasim; Donat, Felix
  • Energy & Environmental Science, Vol. 13, Issue 3
  • DOI: 10.1039/c9ee03793d

Subnanometer cobalt oxide clusters as selective low temperature oxidative dehydrogenation catalysts
journal, February 2019


Metal‐Organic Frameworks as Platform for Lewis‐Acid‐Catalyzed Organic Transformations
journal, July 2019


Chemical looping beyond combustion – a perspective
text, January 2020


Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities
journal, October 2018

  • Vogiatzis, Konstantinos D.; Polynski, Mikhail V.; Kirkland, Justin K.
  • Chemical Reviews, Vol. 119, Issue 4
  • DOI: 10.1021/acs.chemrev.8b00361

Subnanometer cobalt oxide clusters as selective low temperature oxidative dehydrogenation catalysts
journal, February 2019


Bioengineering of Metal-organic Frameworks for Nanomedicine
journal, January 2019

  • Liu, Yuan; Zhao, Yanli; Chen, Xiaoyuan
  • Theranostics, Vol. 9, Issue 11
  • DOI: 10.7150/thno.31918