DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions

Abstract

The metal-organic framework (MOF), NU-1000, and its metalated counterparts have found proof-of-concept application in heterogeneous catalysis and hydrogen storage amongst others. A vapor-phase technique, akin to atomic layer deposition (ALD), is used to selectively deposit divalent Cu ions on oxo, hydroxo-bridged hexa-zirconium(IV) nodes capped with terminal –OH and -OH2 ligands. Subsequent reaction with steam yields node-anchored, CuII-oxo,hydroxo clusters. We find that cluster installation via AIM (= ALD In MOFs) is accompanied by an expansion of MOF mesopore (channel) diameter . We investigated the behavior of the cluster-modified material, termed Cu-AIM-NU-1000, to heat treatment up to 325 °C, at atmospheric pressure with a low flow of H2 into the reaction cell. The response under these conditions revealed two important results: (1) Above 200 °C, the initially installed few-metal-ion clusters reduce to neutral Cu atoms. The neutral atoms migrate from the nodes and aggregate into Cu nanoparticles. While the size of particles formed in the MOF interior is constrained by the width of mesopores (ca. 3 nm), those formed on the exterior surface of the MOF can grow as large as ca. 8 nm. (2) Reduction and release of Cu atoms from the MOFs nodes is accompanied NU-1000 undergoes dynamic structural transformationmore » as it reverts back to its original dimension following the release. These results show while the MOF framework itself remains intact at 325 °C in an H2 atmosphere, the small, AIM-installed CuII-oxo,hydroxo clusters are stable with respect to reduction and conversion to metallic nanoparticles only up to ~200 °C.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [1];  [3];  [4]; ORCiD logo [4];  [4]; ORCiD logo [4]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Univ. of Chicago, IL (United States); Czech Academy of Sciences, Prague (Czech Republic). Dept. of Nanocatalysis, J. Heyrovský Inst. of Physical Chemistry
  4. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1603347
Alternate Identifier(s):
OSTI ID: 1601316
Grant/Contract Number:  
AC02-06CH11357; SC0012702
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 152; Journal Issue: 8; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Atomic layer deposition; Crystalline solids; Catalysis; Ions and properties; X-ray absorption spectroscopy; Nanoparticles; X-ray scattering

Citation Formats

Halder, Avik, Lee, Sungsik, Yang, Bing, Pellin, Michael J., Vajda, Stefan, Li, Zhanyong, Yang, Ying, Farha, Omar K., and Hupp, Joseph T. Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. United States: N. p., 2020. Web. doi:10.1063/1.5130600.
Halder, Avik, Lee, Sungsik, Yang, Bing, Pellin, Michael J., Vajda, Stefan, Li, Zhanyong, Yang, Ying, Farha, Omar K., & Hupp, Joseph T. Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions. United States. https://doi.org/10.1063/1.5130600
Halder, Avik, Lee, Sungsik, Yang, Bing, Pellin, Michael J., Vajda, Stefan, Li, Zhanyong, Yang, Ying, Farha, Omar K., and Hupp, Joseph T. Mon . "Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions". United States. https://doi.org/10.1063/1.5130600. https://www.osti.gov/servlets/purl/1603347.
@article{osti_1603347,
title = {Structural reversibility of Cu doped NU-1000 MOFs under hydrogenation conditions},
author = {Halder, Avik and Lee, Sungsik and Yang, Bing and Pellin, Michael J. and Vajda, Stefan and Li, Zhanyong and Yang, Ying and Farha, Omar K. and Hupp, Joseph T.},
abstractNote = {The metal-organic framework (MOF), NU-1000, and its metalated counterparts have found proof-of-concept application in heterogeneous catalysis and hydrogen storage amongst others. A vapor-phase technique, akin to atomic layer deposition (ALD), is used to selectively deposit divalent Cu ions on oxo, hydroxo-bridged hexa-zirconium(IV) nodes capped with terminal –OH and -OH2 ligands. Subsequent reaction with steam yields node-anchored, CuII-oxo,hydroxo clusters. We find that cluster installation via AIM (= ALD In MOFs) is accompanied by an expansion of MOF mesopore (channel) diameter . We investigated the behavior of the cluster-modified material, termed Cu-AIM-NU-1000, to heat treatment up to 325 °C, at atmospheric pressure with a low flow of H2 into the reaction cell. The response under these conditions revealed two important results: (1) Above 200 °C, the initially installed few-metal-ion clusters reduce to neutral Cu atoms. The neutral atoms migrate from the nodes and aggregate into Cu nanoparticles. While the size of particles formed in the MOF interior is constrained by the width of mesopores (ca. 3 nm), those formed on the exterior surface of the MOF can grow as large as ca. 8 nm. (2) Reduction and release of Cu atoms from the MOFs nodes is accompanied NU-1000 undergoes dynamic structural transformation as it reverts back to its original dimension following the release. These results show while the MOF framework itself remains intact at 325 °C in an H2 atmosphere, the small, AIM-installed CuII-oxo,hydroxo clusters are stable with respect to reduction and conversion to metallic nanoparticles only up to ~200 °C.},
doi = {10.1063/1.5130600},
journal = {Journal of Chemical Physics},
number = 8,
volume = 152,
place = {United States},
year = {Mon Feb 24 00:00:00 EST 2020},
month = {Mon Feb 24 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen Storage in Metal–Organic Frameworks
journal, September 2011

  • Suh, Myunghyun Paik; Park, Hye Jeong; Prasad, Thazhe Kootteri
  • Chemical Reviews, Vol. 112, Issue 2, p. 782-835
  • DOI: 10.1021/cr200274s

Metal-organic frameworks: structure, properties, methods of synthesis and characterization
journal, March 2016

  • Butova, V. V.; Soldatov, M. A.; Guda, A. A.
  • Russian Chemical Reviews, Vol. 85, Issue 3
  • DOI: 10.1070/rcr4554

Structural Transitions of the Metal-Oxide Nodes within Metal–Organic Frameworks: On the Local Structures of NU-1000 and UiO-66
journal, March 2016

  • Platero-Prats, Ana E.; Mavrandonakis, Andreas; Gallington, Leighanne C.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b00069

Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000
journal, January 2017

  • Platero-Prats, Ana E.; Li, Zhanyong; Gallington, Leighanne C.
  • Faraday Discussions, Vol. 201
  • DOI: 10.1039/C7FD00110J

Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework
journal, July 2017

  • Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b02936

Supported gold catalysts: new properties offered by nanometer and sub-nanometer structures
journal, January 2013


Complete furanics–sugar separations with metal–organic framework NU-1000
journal, January 2016

  • Yabushita, Mizuho; Li, Peng; Kobayashi, Hirokazu
  • Chemical Communications, Vol. 52, Issue 79
  • DOI: 10.1039/C6CC05864G

Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework
journal, August 2016

  • Peters, Aaron W.; Li, Zhanyong; Farha, Omar K.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 32
  • DOI: 10.1021/acsami.6b04729

Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature
journal, November 2016


Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes
journal, June 2015

  • Yang, Dong; Odoh, Samuel O.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23, p. 7391-7396
  • DOI: 10.1021/jacs.5b02956

CO 2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles
journal, September 2014

  • Baturina, Olga A.; Lu, Qin; Padilla, Monica A.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs500537y

Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework
journal, September 2018


Exceptional Mechanical Stability of Highly Porous Zirconium Metal–Organic Framework UiO-66 and Its Important Implications
journal, March 2013

  • Wu, Hui; Yildirim, Taner; Zhou, Wei
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz4002345

Stable Metal–Organic Framework-Supported Niobium Catalysts
journal, October 2016


Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions
journal, October 2016

  • Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b08711

Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks
journal, September 2016


Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition
journal, March 2013

  • Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300229c

Irena : tool suite for modeling and analysis of small-angle scattering
journal, February 2009


Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?
journal, April 2013

  • Hansen, Thomas W.; DeLaRiva, Andrew T.; Challa, Sivakumar R.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar3002427

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides
journal, January 2016

  • Ziccarelli, Ida; Neumann, Helfried; Kreyenschulte, Carsten
  • Chemical Communications, Vol. 52, Issue 86
  • DOI: 10.1039/c6cc07269k

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

A versatile sample-environment cell for non-ambient X-ray scattering experiments
journal, July 2008

  • Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles
  • Journal of Applied Crystallography, Vol. 41, Issue 4
  • DOI: 10.1107/S0021889808020165

Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
journal, October 2015

  • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201505625

Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts
journal, July 2013


Metal Nanoparticles Covered with a Metal–Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions
journal, June 2016


Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/B807080F

Reduction of CuO and Cu 2 O with H 2 : H Embedding and Kinetic Effects in the Formation of Suboxides
journal, September 2003

  • Kim, Jae Y.; Rodriguez, José A.; Hanson, Jonathan C.
  • Journal of the American Chemical Society, Vol. 125, Issue 35
  • DOI: 10.1021/ja0301673

Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties
journal, March 2010

  • Zlotea, Claudia; Campesi, Renato; Cuevas, Fermin
  • Journal of the American Chemical Society, Vol. 132, Issue 9
  • DOI: 10.1021/ja9084995

Electronic structure of small copper oxide clusters: From Cu 2 O to Cu 2 O 4
journal, March 1996


Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies
journal, October 2013

  • Deria, Pravas; Mondloch, Joseph E.; Tylianakis, Emmanuel
  • Journal of the American Chemical Society, Vol. 135, Issue 45, p. 16801-16804
  • DOI: 10.1021/ja408959g

Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications
journal, February 2017


Investigation on Hydrogenation of Metal–Organic Frameworks HKUST-1, MIL-53, and ZIF-8 by Hydrogen Spillover
journal, April 2013

  • Chen, Hao; Wang, Lifeng; Yang, Jun
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp401367k

Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions
journal, July 2010

  • Meilikhov, Mikhail; Yusenko, Kirill; Esken, Daniel
  • European Journal of Inorganic Chemistry, Vol. 2010, Issue 24, p. 3701-3714
  • DOI: 10.1002/ejic.201000473

Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000
journal, December 2015

  • Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo
  • Nature Protocols, Vol. 11, Issue 1
  • DOI: 10.1038/nprot.2016.001

Uniformity begets selectivity
journal, June 2017

  • Yang, Dong; Gates, Bruce C.
  • Nature Materials, Vol. 16, Issue 7
  • DOI: 10.1038/nmat4924

Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks
journal, December 2016

  • Rimoldi, Martino; Howarth, Ashlee J.; DeStefano, Matthew R.
  • ACS Catalysis, Vol. 7, Issue 2
  • DOI: 10.1021/acscatal.6b02923

Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks
journal, November 2016

  • Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 138, Issue 48
  • DOI: 10.1021/jacs.6b11821

Electrochemical behaviour of naked sub-nanometre sized copper clusters and effect of CO 2
journal, January 2016

  • Passalacqua, Rosalba; Parathoner, Siglinda; Centi, Gabriele
  • Catalysis Science & Technology, Vol. 6, Issue 18
  • DOI: 10.1039/C6CY00942E

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition
journal, March 2012


Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst
journal, August 2002

  • Landon, Philip; Collier, Paul J.; Papworth, Adam J.
  • Chemical Communications, Issue 18
  • DOI: 10.1039/b205248m

Nanostructured Catalysts for Organic Transformations
journal, January 2013

  • Chng, Leng Leng; Erathodiyil, Nandanan; Ying, Jackie Y.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300197s

Single-Site Cobalt Catalysts at New Zr 82 -O) 82 -OH) 4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles
journal, September 2016

  • Ji, Pengfei; Manna, Kuntal; Lin, Zekai
  • Journal of the American Chemical Society, Vol. 138, Issue 37
  • DOI: 10.1021/jacs.6b06759

An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation
journal, October 2016

  • Noh, Hyunho; Cui, Yuexing; Peters, Aaron W.
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b08898

Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal–Organic Frameworks
journal, March 2014

  • Aijaz, Arshad; Xu, Qiang
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 8, p. 1400-1411
  • DOI: 10.1021/jz5004044

Density Functional Calculation of the Structure and Electronic Properties of Cu n O n ( n = 1−8) Clusters
journal, March 2011

  • Bae, Gyun-Tack; Dellinger, Barry; Hall, Randall W.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 11
  • DOI: 10.1021/jp104177q

Temperature Treatment of Highly Porous Zirconium-Containing Metal–Organic Frameworks Extends Drug Delivery Release
journal, May 2017

  • Teplensky, Michelle H.; Fantham, Marcus; Li, Peng
  • Journal of the American Chemical Society, Vol. 139, Issue 22
  • DOI: 10.1021/jacs.7b01451

Roll-to-Roll Production of Metal-Organic Framework Coatings for Particulate Matter Removal
journal, January 2017


Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting
journal, February 2016

  • Malonzo, Camille D.; Shaker, Sammy M.; Ren, Limin
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b12688

Nanoparticles for Catalysis
journal, April 2013

  • Xia, Younan; Yang, Hong; Campbell, Charles T.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar400148q

Synthesis and Stability of Tagged UiO-66 Zr-MOFs
journal, December 2010

  • Kandiah, Mathivathani; Nilsen, Merete Hellner; Usseglio, Sandro
  • Chemistry of Materials, Vol. 22, Issue 24
  • DOI: 10.1021/cm102601v

Copper Cluster Size Effect in Methanol Synthesis from CO 2
journal, May 2017

  • Yang, Bing; Liu, Cong; Halder, Avik
  • The Journal of Physical Chemistry C, Vol. 121, Issue 19
  • DOI: 10.1021/acs.jpcc.7b01835

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Cluster calculations for H 2 dissociation on Cu and Ni
journal, January 1988


Molecular structure of copper(I) hydroxide and copper hydroxide(1-) (Cu(OH)2-). An ab initio study
journal, October 1984

  • Illas, F.; Rubio, J.; Centellas, F.
  • The Journal of Physical Chemistry, Vol. 88, Issue 22
  • DOI: 10.1021/j150666a022

MOF Functionalization via Solvent-Assisted Ligand Incorporation: Phosphonates vs Carboxylates
journal, February 2015

  • Deria, Pravas; Bury, Wojciech; Hod, Idan
  • Inorganic Chemistry, Vol. 54, Issue 5
  • DOI: 10.1021/ic502639v

Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation
journal, January 2014

  • Deria, Pravas; Bury, Wojciech; Hupp, Joseph T.
  • Chemical Communications, Vol. 50, Issue 16, p. 1965-1968
  • DOI: 10.1039/C3CC48562E

Nanostructured Catalysts for Organic Transformations
journal, January 2013

  • Chng, Leng Leng; Erathodiyil, Nandanan; Ying, Jackie Y.
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300197s