DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering

Abstract

Stratospheric aerosol geoengineering has been proposed as a potential solution to reduce climate change and its impacts. Here, we explore the responses of the Hadley circulation (HC) intensity and the intertropical convergence zone (ITCZ) using the strategic stratospheric aerosol geoengineering, in which sulfur dioxide was injected into the stratosphere at four different locations to maintain the global-mean surface temperature and the interhemispheric and equator-to-pole temperature gradients at present-day values (baseline). Simulations show that, relative to the baseline, strategic stratospheric aerosol geoengineering generally maintains northern winter December–January–February (DJF) HC intensity under RCP8.5, while it overcompensates for the greenhouse gas (GHG)-forced southern winter June–July–August (JJA) HC intensity increase, producing a 3.5 ± 0.4% weakening. The residual change of southern HC intensity in JJA is mainly associated with stratospheric heating and tropospheric temperature response due to enhanced stratospheric aerosol concentrations. Geoengineering overcompensates for the GHG-driven northward ITCZ shifts, producing 0.7° ± 0.1° and 0.2° ± 0.1° latitude southward migrations in JJA and DJF, respectively relative to the baseline. These migrations are affected by tropical interhemispheric temperature differences both at the surface and in the free troposphere. Further strategies for reducing the residual change of HC intensity and ITCZ shifts under stratospheric aerosol geoengineeringmore » could involve minimizing stratospheric heating and restoring and preserving the present-day tropical tropospheric interhemispheric temperature differences.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [5];  [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [2];  [8];  [9]; ORCiD logo [10]
  1. Chinese Academy of Sciences (CAS), Beijing (China)
  2. Cornell Univ., Ithaca, NY (United States)
  3. Indiana Univ., Bloomington, IN (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
  4. Texas A & M Univ., College Station, TX (United States)
  5. Tsinghua Univ., Beijing (China)
  6. Peking Univ., Beijing (China)
  7. Indiana Univ., Bloomington, IN (United States)
  8. Chinese Academy of Sciences (CAS), Beijing (China); University of Lapland (Finland)
  9. Ministry of Natural Resources (China)
  10. Chinese Academy of Sciences (CAS), Beijing (China); University of Chinese Academy of Sciences, Beijing (China)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
2282468
Report Number(s):
PNNL-SA-179464
Journal ID: ISSN 2397-3722
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
npj Climate and Atmospheric Science
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2397-3722
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; atmospheric dynamics; climate and earth system modelling; climate-change mitigation

Citation Formats

Cheng, Wei, MacMartin, Douglas G., Kravitz, Ben, Visioni, Daniele, Bednarz, Ewa M., Xu, Yangyang, Luo, Yong, Huang, Lei, Hu, Yongyun, Staten, Paul W., Hitchcock, Peter, Moore, John C., Guo, Anboyu, and Deng, Xiangzheng. Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering. United States: N. p., 2022. Web. doi:10.1038/s41612-022-00254-6.
Cheng, Wei, MacMartin, Douglas G., Kravitz, Ben, Visioni, Daniele, Bednarz, Ewa M., Xu, Yangyang, Luo, Yong, Huang, Lei, Hu, Yongyun, Staten, Paul W., Hitchcock, Peter, Moore, John C., Guo, Anboyu, & Deng, Xiangzheng. Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering. United States. https://doi.org/10.1038/s41612-022-00254-6
Cheng, Wei, MacMartin, Douglas G., Kravitz, Ben, Visioni, Daniele, Bednarz, Ewa M., Xu, Yangyang, Luo, Yong, Huang, Lei, Hu, Yongyun, Staten, Paul W., Hitchcock, Peter, Moore, John C., Guo, Anboyu, and Deng, Xiangzheng. Tue . "Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering". United States. https://doi.org/10.1038/s41612-022-00254-6. https://www.osti.gov/servlets/purl/2282468.
@article{osti_2282468,
title = {Changes in Hadley circulation and intertropical convergence zone under strategic stratospheric aerosol geoengineering},
author = {Cheng, Wei and MacMartin, Douglas G. and Kravitz, Ben and Visioni, Daniele and Bednarz, Ewa M. and Xu, Yangyang and Luo, Yong and Huang, Lei and Hu, Yongyun and Staten, Paul W. and Hitchcock, Peter and Moore, John C. and Guo, Anboyu and Deng, Xiangzheng},
abstractNote = {Stratospheric aerosol geoengineering has been proposed as a potential solution to reduce climate change and its impacts. Here, we explore the responses of the Hadley circulation (HC) intensity and the intertropical convergence zone (ITCZ) using the strategic stratospheric aerosol geoengineering, in which sulfur dioxide was injected into the stratosphere at four different locations to maintain the global-mean surface temperature and the interhemispheric and equator-to-pole temperature gradients at present-day values (baseline). Simulations show that, relative to the baseline, strategic stratospheric aerosol geoengineering generally maintains northern winter December–January–February (DJF) HC intensity under RCP8.5, while it overcompensates for the greenhouse gas (GHG)-forced southern winter June–July–August (JJA) HC intensity increase, producing a 3.5 ± 0.4% weakening. The residual change of southern HC intensity in JJA is mainly associated with stratospheric heating and tropospheric temperature response due to enhanced stratospheric aerosol concentrations. Geoengineering overcompensates for the GHG-driven northward ITCZ shifts, producing 0.7° ± 0.1° and 0.2° ± 0.1° latitude southward migrations in JJA and DJF, respectively relative to the baseline. These migrations are affected by tropical interhemispheric temperature differences both at the surface and in the free troposphere. Further strategies for reducing the residual change of HC intensity and ITCZ shifts under stratospheric aerosol geoengineering could involve minimizing stratospheric heating and restoring and preserving the present-day tropical tropospheric interhemispheric temperature differences.},
doi = {10.1038/s41612-022-00254-6},
journal = {npj Climate and Atmospheric Science},
number = 1,
volume = 5,
place = {United States},
year = {Tue Apr 19 00:00:00 EDT 2022},
month = {Tue Apr 19 00:00:00 EDT 2022}
}

Works referenced in this record:

Thermodynamic and dynamic responses of the hydrological cycle to solar dimming
journal, January 2017

  • Smyth, Jane E.; Russotto, Rick D.; Storelvmo, Trude
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 10
  • DOI: 10.5194/acp-17-6439-2017

Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall
journal, March 2013

  • Haywood, Jim M.; Jones, Andy; Bellouin, Nicolas
  • Nature Climate Change, Vol. 3, Issue 7
  • DOI: 10.1038/nclimate1857

Stratospheric solar geoengineering without ozone loss
journal, December 2016

  • Keith, David W.; Weisenstein, Debra K.; Dykema, John A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 52
  • DOI: 10.1073/pnas.1615572113

Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection
journal, January 2018

  • Kang, Sarah M.; Shin, Yechul; Xie, Shang-Ping
  • npj Climate and Atmospheric Science, Vol. 1, Issue 1
  • DOI: 10.1038/s41612-017-0004-6

Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming
journal, July 2010

  • Bekryaev, Roman V.; Polyakov, Igor V.; Alexeev, Vladimir A.
  • Journal of Climate, Vol. 23, Issue 14
  • DOI: 10.1175/2010JCLI3297.1

Forcing Dependence of Atmospheric Lapse Rate Changes Dominates Residual Polar Warming in Solar Radiation Management Climate Scenarios
journal, August 2020

  • Henry, Matthew; Merlis, Timothy M.
  • Geophysical Research Letters, Vol. 47, Issue 15
  • DOI: 10.1029/2020GL087929

Extratropical Cooling, Interhemispheric Thermal Gradients, and Tropical Climate Change
journal, May 2012


Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target
journal, April 2018

  • MacMartin, Douglas G.; Ricke, Katharine L.; Keith, David W.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2119
  • DOI: 10.1098/rsta.2016.0454

Re-examining tropical expansion
journal, August 2018


Arctic amplification dominated by temperature feedbacks in contemporary climate models
journal, February 2014

  • Pithan, Felix; Mauritsen, Thorsten
  • Nature Geoscience, Vol. 7, Issue 3
  • DOI: 10.1038/ngeo2071

Observed poleward expansion of the Hadley circulation since 1979
journal, January 2007


The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP): THE HYDROLOGIC IMPACT OF GEOENGINEERING
journal, October 2013

  • Tilmes, Simone; Fasullo, John; Lamarque, Jean-Francois
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 19
  • DOI: 10.1002/jgrd.50868

Zonally contrasting shifts of the tropical rain belt in response to climate change
journal, January 2021


A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations: FUTURE CHANGES IN HADLEY CELL STRENGTH
journal, July 2014

  • Seo, Kyong-Hwan; Frierson, Dargan M. W.; Son, Jun-Hyeok
  • Geophysical Research Letters, Vol. 41, Issue 14
  • DOI: 10.1002/2014GL060868

Climate Change Impacts on Global Food Security
journal, August 2013


Geoengineering Earth's radiation balance to mitigate CO 2 -induced climate change
journal, July 2000

  • Govindasamy, Bala; Caldeira, Ken
  • Geophysical Research Letters, Vol. 27, Issue 14
  • DOI: 10.1029/1999GL006086

Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO 2 Injection Strategies
journal, July 2019

  • Kravitz, Ben; MacMartin, Douglas G.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 14
  • DOI: 10.1029/2019JD030329

Response of the Hadley Circulation to Climate Change in an Aquaplanet GCM Coupled to a Simple Representation of Ocean Heat Transport
journal, April 2011

  • Levine, Xavier J.; Schneider, Tapio
  • Journal of the Atmospheric Sciences, Vol. 68, Issue 4
  • DOI: 10.1175/2010JAS3553.1

Robust Responses of the Hydrological Cycle to Global Warming
journal, November 2006

  • Held, Isaac M.; Soden, Brian J.
  • Journal of Climate, Vol. 19, Issue 21
  • DOI: 10.1175/JCLI3990.1

Robust Hadley Circulation changes and increasing global dryness due to CO 2 warming from CMIP5 model projections
journal, February 2015


Weakened tropical circulation and reduced precipitation in response to geoengineering
journal, January 2014

  • Ferraro, Angus J.; Highwood, Eleanor J.; Charlton-Perez, Andrew J.
  • Environmental Research Letters, Vol. 9, Issue 1
  • DOI: 10.1088/1748-9326/9/1/014001

Mechanisms for Tropical Tropospheric Circulation Change in Response to Global Warming*
journal, April 2012


The Regional Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of Stratospheric Heating
journal, December 2019

  • Simpson, I. R.; Tilmes, S.; Richter, J. H.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2019JD031093

Is Turning Down the Sun a Good Proxy for Stratospheric Sulfate Geoengineering?
journal, March 2021

  • Visioni, Daniele; MacMartin, Douglas G.; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 5
  • DOI: 10.1029/2020JD033952

Regional Widening of Tropical Overturning: Forced Change, Natural Variability, and Recent Trends
journal, June 2019

  • Staten, Paul W.; Grise, Kevin M.; Davis, Sean M.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 12
  • DOI: 10.1029/2018JD030100

CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project
journal, November 2018

  • Tilmes, Simone; Richter, Jadwiga H.; Kravitz, Ben
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 11
  • DOI: 10.1175/BAMS-D-17-0267.1

Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)
journal, December 2017

  • Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD027006

First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives
journal, December 2017

  • Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026874

Comparison of trends in the Hadley circulation between CMIP6 and CMIP5
journal, October 2020


Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO 2 Injections
journal, December 2017

  • Richter, Jadwiga H.; Tilmes, Simone; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026912

Winter warming from large volcanic eruptions
journal, December 1992

  • Robock, Alan; Mao, Jianping
  • Geophysical Research Letters, Vol. 19, Issue 24
  • DOI: 10.1029/92GL02627

Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions: VOLCANIC IMPACTS IN THE CMIP5 MODELS
journal, September 2012

  • Driscoll, Simon; Bozzo, Alessio; Gray, Lesley J.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D17
  • DOI: 10.1029/2012JD017607

Response of the large-scale structure of the atmosphere to global warming: Response of Atmospheric Structure to Global Warming
journal, November 2014

  • Vallis, Geoffrey K.; Zurita-Gotor, Pablo; Cairns, Cameron
  • Quarterly Journal of the Royal Meteorological Society, Vol. 141, Issue 690
  • DOI: 10.1002/qj.2456

Patterns of the seasonal response of tropical rainfall to global warming
journal, April 2013

  • Huang, Ping; Xie, Shang-Ping; Hu, Kaiming
  • Nature Geoscience, Vol. 6, Issue 5
  • DOI: 10.1038/ngeo1792

Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble
journal, December 2019

  • Cheng, Wei; MacMartin, Douglas G.; Dagon, Katherine
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2018JD030237

The Hadley Circulation in Reanalyses: Climatology, Variability, and Change
journal, May 2013


Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim: PACIFIC ITCZ CHARACTERIZATION
journal, April 2016

  • Wodzicki, K. R.; Rapp, A. D.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 7
  • DOI: 10.1002/2015JD024458

Ocean mediation of tropospheric response to reflecting and absorbing aerosols
journal, January 2015


Recent Tropical Expansion: Natural Variability or Forced Response?
journal, March 2019


Stratospheric Response in the First Geoengineering Simulation Meeting Multiple Surface Climate Objectives
journal, June 2018

  • Richter, Jadwiga H.; Tilmes, Simone; Glanville, Anne
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 11
  • DOI: 10.1029/2018JD028285

The Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2011

  • Kravitz, Ben; Robock, Alan; Boucher, Olivier
  • Atmospheric Science Letters, Vol. 12, Issue 2
  • DOI: 10.1002/asl.316

Abrupt Seasonal Migration of the ITCZ into the Summer Hemisphere
journal, June 2008

  • Xian, Peng; Miller, Ron L.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 6
  • DOI: 10.1175/2007JAS2367.1

Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP): GEOMIP MODEL RESPONSE
journal, August 2013

  • Kravitz, Ben; Caldeira, Ken; Boucher, Olivier
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 15
  • DOI: 10.1002/jgrd.50646

Narrowing of the ITCZ in a warming climate: Physical mechanisms: NARROWING ITCZ: PHYSICAL MECHANISMS
journal, November 2016

  • Byrne, Michael P.; Schneider, Tapio
  • Geophysical Research Letters, Vol. 43, Issue 21
  • DOI: 10.1002/2016GL070396

Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment
journal, January 2018

  • Guo, Anboyu; Moore, John C.; Ji, Duoying
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 12
  • DOI: 10.5194/acp-18-8689-2018

Migrations and dynamics of the intertropical convergence zone
journal, September 2014

  • Schneider, Tapio; Bischoff, Tobias; Haug, Gerald H.
  • Nature, Vol. 513, Issue 7516
  • DOI: 10.1038/nature13636

Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength
journal, August 2018

  • Byrne, Michael P.; Pendergrass, Angeline G.; Rapp, Anita D.
  • Current Climate Change Reports, Vol. 4, Issue 4
  • DOI: 10.1007/s40641-018-0110-5

Geoengineering as a design problem
journal, January 2016

  • Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
  • Earth System Dynamics, Vol. 7, Issue 2
  • DOI: 10.5194/esd-7-469-2016

Volcanic eruptions and climate
journal, May 2000


Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations
journal, January 2016

  • Davis, Nicholas A.; Seidel, Dian J.; Birner, Thomas
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 15
  • DOI: 10.5194/acp-16-10083-2016

Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics
journal, January 2021

  • Banerjee, Antara; Butler, Amy H.; Polvani, Lorenzo M.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 9
  • DOI: 10.5194/acp-21-6985-2021

Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere
journal, March 1980


Geoengineering Earth's radiation balance to mitigate climate change from a quadrupling of CO2
journal, June 2003


Stratospheric heating by potential geoengineering aerosols: HEATING BY GEOENGINEERING AEROSOLS
journal, December 2011

  • Ferraro, A. J.; Highwood, E. J.; Charlton-Perez, A. J.
  • Geophysical Research Letters, Vol. 38, Issue 24
  • DOI: 10.1029/2011GL049761

Global warming-accelerated drying in the tropics
journal, March 2015