skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering

Abstract

A new set of stratospheric aerosol geoengineering (SAG) model experiments has been performed with Community Earth System Model version 2 (CESM2) with the Whole Atmosphere Community Climate Model (WACCM6) that are based on the Coupled Model Intercomparison Project phase 6 (CMIP6) overshoot scenario (SSP5-34-OS) as a baseline scenario to limit global warming to 1.5 or 2.0 °C above 1850–1900 conditions. The overshoot scenario allows us to applying a peak-shaving scenario that reduces the needed duration and amount of SAG application compared to a high forcing scenario. In addition, a feedback algorithm identifies the needed amount of sulfur dioxide injections in the stratosphere at four pre-defined latitudes, 30 °N, 15 °N, 15 °S, and 30 °S, to reach three surface temperature targets: global mean temperature, and interhemispheric and pole-to-Equator temperature gradients. These targets further help to reduce side effects, including overcooling in the tropics, warming of high latitudes, and large shifts in precipitation patterns. These experiments are therefore relevant for investigating the impacts on society and ecosystems. Comparisons to SAG simulations based on a high emission pathway baseline scenario (SSP5-85) are also performed to investigate the dependency of impacts using different injection amounts to offset surface warming by SAG. We find that changes from present-day conditions around 2020 in some variablesmore » depend strongly on the defined temperature target (1.5 °C vs. 2.0 °C). These include surface air temperature and related impacts, the Atlantic Meridional Overturning Circulation, which impacts ocean net primary productivity, and changes in ice sheet surface mass balance, which impacts sea level rise. Others, including global precipitation changes and the recovery of the Antarctic ozone hole, depend strongly on the amount of SAG application. Furthermore, land net primary productivity as well as ocean acidification depend mostly on the global atmospheric CO2 concentration and therefore the baseline scenario. Multi-model comparisons of experiments that include strong mitigation and carbon dioxide removal with some SAG application are proposed to assess the robustness of impacts on societies and ecosystems.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [5];  [6];  [7]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [8]; ORCiD logo [6]
  1. National Center for Atmospheric Research, Boulder, CO (United States)
  2. Cornell University, Ithaca, NY (United States)
  3. University of Colorado, Boulder, CO (United States)
  4. Utrecht University (Netherlands)
  5. Delft University of Technology (Netherlands)
  6. Rutgers University, New Brunswick, NJ (United States)
  7. University of Texas Rio Grande Valley, Port Isabel, TX (United States)
  8. Indiana University, Bloomington, IN (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1673310
Report Number(s):
PNNL-SA-152096
Journal ID: ISSN 2190-4987
Grant/Contract Number:  
AC05-76RL01830; AGS-1617844; 1852977
Resource Type:
Accepted Manuscript
Journal Name:
Earth System Dynamics (Online)
Additional Journal Information:
Journal Name: Earth System Dynamics (Online); Journal Volume: 11; Journal Issue: 3; Journal ID: ISSN 2190-4987
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English

Citation Formats

Tilmes, Simone, MacMartin, Douglas G., Lenaerts, Jan T. M., van Kampenhout, Leo, Muntjewerf, Laura, Xia, Lili, Harrison, Cheryl S., Krumhardt, Kristen M., Mills, Michael J., Kravitz, Ben, and Robock, Alan. Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. United States: N. p., 2020. Web. doi:10.5194/esd-11-579-2020.
Tilmes, Simone, MacMartin, Douglas G., Lenaerts, Jan T. M., van Kampenhout, Leo, Muntjewerf, Laura, Xia, Lili, Harrison, Cheryl S., Krumhardt, Kristen M., Mills, Michael J., Kravitz, Ben, & Robock, Alan. Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. United States. doi:10.5194/esd-11-579-2020.
Tilmes, Simone, MacMartin, Douglas G., Lenaerts, Jan T. M., van Kampenhout, Leo, Muntjewerf, Laura, Xia, Lili, Harrison, Cheryl S., Krumhardt, Kristen M., Mills, Michael J., Kravitz, Ben, and Robock, Alan. Tue . "Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering". United States. doi:10.5194/esd-11-579-2020. https://www.osti.gov/servlets/purl/1673310.
@article{osti_1673310,
title = {Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering},
author = {Tilmes, Simone and MacMartin, Douglas G. and Lenaerts, Jan T. M. and van Kampenhout, Leo and Muntjewerf, Laura and Xia, Lili and Harrison, Cheryl S. and Krumhardt, Kristen M. and Mills, Michael J. and Kravitz, Ben and Robock, Alan},
abstractNote = {A new set of stratospheric aerosol geoengineering (SAG) model experiments has been performed with Community Earth System Model version 2 (CESM2) with the Whole Atmosphere Community Climate Model (WACCM6) that are based on the Coupled Model Intercomparison Project phase 6 (CMIP6) overshoot scenario (SSP5-34-OS) as a baseline scenario to limit global warming to 1.5 or 2.0 °C above 1850–1900 conditions. The overshoot scenario allows us to applying a peak-shaving scenario that reduces the needed duration and amount of SAG application compared to a high forcing scenario. In addition, a feedback algorithm identifies the needed amount of sulfur dioxide injections in the stratosphere at four pre-defined latitudes, 30 °N, 15 °N, 15 °S, and 30 °S, to reach three surface temperature targets: global mean temperature, and interhemispheric and pole-to-Equator temperature gradients. These targets further help to reduce side effects, including overcooling in the tropics, warming of high latitudes, and large shifts in precipitation patterns. These experiments are therefore relevant for investigating the impacts on society and ecosystems. Comparisons to SAG simulations based on a high emission pathway baseline scenario (SSP5-85) are also performed to investigate the dependency of impacts using different injection amounts to offset surface warming by SAG. We find that changes from present-day conditions around 2020 in some variables depend strongly on the defined temperature target (1.5 °C vs. 2.0 °C). These include surface air temperature and related impacts, the Atlantic Meridional Overturning Circulation, which impacts ocean net primary productivity, and changes in ice sheet surface mass balance, which impacts sea level rise. Others, including global precipitation changes and the recovery of the Antarctic ozone hole, depend strongly on the amount of SAG application. Furthermore, land net primary productivity as well as ocean acidification depend mostly on the global atmospheric CO2 concentration and therefore the baseline scenario. Multi-model comparisons of experiments that include strong mitigation and carbon dioxide removal with some SAG application are proposed to assess the robustness of impacts on societies and ecosystems.},
doi = {10.5194/esd-11-579-2020},
journal = {Earth System Dynamics (Online)},
number = 3,
volume = 11,
place = {United States},
year = {2020},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Dynamics of the coupled human–climate system resulting from closed-loop control of solar geoengineering
journal, June 2013


Climate impacts of geoengineering in a delayed mitigation scenario: GEOENGINEERING AND DELAYED MITIGATION
journal, August 2016

  • Tilmes, S.; Sanderson, B. M.; O'Neill, B. C.
  • Geophysical Research Letters, Vol. 43, Issue 15
  • DOI: 10.1002/2016GL070122

The CCSM4 Ocean Component
journal, March 2012

  • Danabasoglu, Gokhan; Bates, Susan C.; Briegleb, Bruce P.
  • Journal of Climate, Vol. 25, Issue 5
  • DOI: 10.1175/JCLI-D-11-00091.1

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models
journal, January 2013


Comparing global models of terrestrial net primary productivity (NPP): overview and key results
journal, April 1999


Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target
journal, April 2018

  • MacMartin, Douglas G.; Ricke, Katharine L.; Keith, David W.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 376, Issue 2119
  • DOI: 10.1098/rsta.2016.0454

The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
journal, January 2016

  • O'Neill, Brian C.; Tebaldi, Claudia; van Vuuren, Detlef P.
  • Geoscientific Model Development, Vol. 9, Issue 9
  • DOI: 10.5194/gmd-9-3461-2016

Climate change impacts on marine ecosystems through the lens of the size spectrum
journal, May 2019

  • Heneghan, Ryan F.; Hatton, Ian A.; Galbraith, Eric D.
  • Emerging Topics in Life Sciences, Vol. 3, Issue 2
  • DOI: 10.1042/ETLS20190042

Sensitivity of Aerosol Distribution and Climate Response to Stratospheric SO 2 Injection Locations
journal, December 2017

  • Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026888

Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO 2 Injection Strategies
journal, July 2019

  • Kravitz, Ben; MacMartin, Douglas G.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 14
  • DOI: 10.1029/2019JD030329

Timescale for Detecting the Climate Response to Stratospheric Aerosol Geoengineering
journal, February 2019

  • MacMartin, Douglas G.; Wang, Wenli; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 3
  • DOI: 10.1029/2018JD028906

Coccolithophore Growth and Calcification in an Acidified Ocean: Insights From Community Earth System Model Simulations
journal, May 2019

  • Krumhardt, K. M.; Lovenduski, N. S.; Long, M. C.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 5
  • DOI: 10.1029/2018MS001483

The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results
journal, January 2015

  • Kravitz, B.; Robock, A.; Tilmes, S.
  • Geoscientific Model Development, Vol. 8, Issue 10
  • DOI: 10.5194/gmd-8-3379-2015

Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change
journal, June 2019

  • Lotze, Heike K.; Tittensor, Derek P.; Bryndum-Buchholz, Andrea
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 26
  • DOI: 10.1073/pnas.1900194116

Weakened tropical circulation and reduced precipitation in response to geoengineering
journal, January 2014

  • Ferraro, Angus J.; Highwood, Eleanor J.; Charlton-Perez, Andrew J.
  • Environmental Research Letters, Vol. 9, Issue 1
  • DOI: 10.1088/1748-9326/9/1/014001

The Regional Hydroclimate Response to Stratospheric Sulfate Geoengineering and the Role of Stratospheric Heating
journal, December 2019

  • Simpson, I. R.; Tilmes, S.; Richter, J. H.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2019JD031093

New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption
journal, January 1994

  • Baran, A. J.; Foot, J. S.
  • Journal of Geophysical Research, Vol. 99, Issue D12
  • DOI: 10.1029/94JD02044

Mesoscale Effects on Carbon Export: A Global Perspective
journal, April 2018

  • Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.
  • Global Biogeochemical Cycles, Vol. 32, Issue 4
  • DOI: 10.1002/2017GB005751

Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario
journal, January 2014

  • Moore, John C.; Rinke, Annette; Yu, Xiaoyong
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 2
  • DOI: 10.1002/2013JD021060

Impact of geoengineered aerosols on the troposphere and stratosphere
journal, January 2009

  • Tilmes, Simone; Garcia, Rolando R.; Kinnison, Douglas E.
  • Journal of Geophysical Research, Vol. 114, Issue D12
  • DOI: 10.1029/2008JD011420

CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project
journal, November 2018

  • Tilmes, Simone; Richter, Jadwiga H.; Kravitz, Ben
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 11
  • DOI: 10.1175/BAMS-D-17-0267.1

Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model
journal, January 2016


Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)
journal, December 2017

  • Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD027006

First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives
journal, December 2017

  • Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026874

Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS
journal, March 2016

  • Mills, Michael J.; Schmidt, Anja; Easter, Richard
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 5
  • DOI: 10.1002/2015JD024290

Observing and Modeling Ice Sheet Surface Mass Balance
journal, June 2019

  • Lenaerts, Jan T. M.; Medley, Brooke; Broeke, Michiel R.
  • Reviews of Geophysics, Vol. 57, Issue 2
  • DOI: 10.1029/2018RG000622

Present‐Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2
journal, February 2020

  • van Kampenhout, Leonardus; Lenaerts, Jan T. M.; Lipscomb, William H.
  • Journal of Geophysical Research: Earth Surface, Vol. 125, Issue 2
  • DOI: 10.1029/2019JF005318

Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2)
journal, December 2019

  • Tilmes, S.; Hodzic, A.; Emmons, L. K.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2019MS001827

Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise
journal, December 2018


Is a Decline of AMOC Causing the Warming Hole above the North Atlantic in Observed and Modeled Warming Patterns?
journal, December 2012

  • Drijfhout, Sybren; van Oldenborgh, Geert Jan; Cimatoribus, Andrea
  • Journal of Climate, Vol. 25, Issue 24
  • DOI: 10.1175/JCLI-D-12-00490.1

Impact of geoengineering schemes on the terrestrial biosphere: IMPACT OF GEOENGINEERING SCHEMES ON THE TERRESTRIAL BIOSPHERE
journal, November 2002

  • Govindasamy, B.; Thompson, S.; Duffy, P. B.
  • Geophysical Research Letters, Vol. 29, Issue 22
  • DOI: 10.1029/2002GL015911

Chemical ozone loss in the Arctic winter 1991–1992
journal, January 2008

  • Tilmes, S.; Müller, R.; Salawitch, R. J.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 7
  • DOI: 10.5194/acp-8-1897-2008

Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble
journal, December 2019

  • Cheng, Wei; MacMartin, Douglas G.; Dagon, Katherine
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2018JD030237

Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals
journal, September 2018


Description and evaluation of the Community Ice Sheet Model (CISM) v2.1
journal, January 2019

  • Lipscomb, William H.; Price, Stephen F.; Hoffman, Matthew J.
  • Geoscientific Model Development, Vol. 12, Issue 1
  • DOI: 10.5194/gmd-12-387-2019

The Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2011

  • Kravitz, Ben; Robock, Alan; Boucher, Olivier
  • Atmospheric Science Letters, Vol. 12, Issue 2
  • DOI: 10.1002/asl.316

Persistent polar ocean warming in a strategically geoengineered climate
journal, October 2018


Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP): GEOMIP MODEL RESPONSE
journal, August 2013

  • Kravitz, Ben; Caldeira, Ken; Boucher, Olivier
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 15
  • DOI: 10.1002/jgrd.50646

On the recent contribution of the Greenland ice sheet to sea level change
journal, January 2016

  • van den Broeke, Michiel R.; Enderlin, Ellyn M.; Howat, Ian M.
  • The Cryosphere, Vol. 10, Issue 5
  • DOI: 10.5194/tc-10-1933-2016

Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model
journal, January 2014

  • Dhomse, S. S.; Emmerson, K. M.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 20
  • DOI: 10.5194/acp-14-11221-2014

Climate engineering and the ocean: effects on biogeochemistry and primary production
journal, January 2017


The Whole Atmosphere Community Climate Model Version 6 (WACCM6)
journal, December 2019

  • Gettelman, A.; Mills, M. J.; Kinnison, D. E.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2019JD030943

Geoengineering as a design problem
journal, January 2016

  • Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
  • Earth System Dynamics, Vol. 7, Issue 2
  • DOI: 10.5194/esd-7-469-2016

The Community Earth System Model Version 2 (CESM2)
journal, February 2020

  • Danabasoglu, G.; Lamarque, J. ‐F.; Bacmeister, J.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 2
  • DOI: 10.1029/2019MS001916

Historical greenhouse gas concentrations for climate modelling (CMIP6)
journal, January 2017

  • Meinshausen, Malte; Vogel, Elisabeth; Nauels, Alexander
  • Geoscientific Model Development, Vol. 10, Issue 5
  • DOI: 10.5194/gmd-10-2057-2017

The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations
journal, December 2017

  • MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026868

Effects of Elevated CO2 on a Natural Diatom Community in the Subtropical NE Atlantic
journal, March 2019

  • Bach, Lennart T.; Hernández-Hernández, Nauzet; Taucher, Jan
  • Frontiers in Marine Science, Vol. 6
  • DOI: 10.3389/fmars.2019.00075

The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty
journal, December 2019

  • Lawrence, David M.; Fisher, Rosie A.; Koven, Charles D.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2018MS001583

A Combined Mitigation/Geoengineering Approach to Climate Stabilization
journal, October 2006


The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2)
journal, April 2020

  • Emmons, Louisa K.; Schwantes, Rebecca H.; Orlando, John J.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 4
  • DOI: 10.1029/2019MS001882

Avoidable impacts of ocean warming on marine primary production: Insights from the CESM ensembles: AVOIDABLE IMPACTS OF OCEAN WARMING
journal, January 2017

  • Krumhardt, Kristen M.; Lovenduski, Nicole S.; Long, Matthew C.
  • Global Biogeochemical Cycles, Vol. 31, Issue 1
  • DOI: 10.1002/2016GB005528

Drivers and uncertainties of future global marine primary production in marine ecosystem models
journal, January 2015


Contribution of the Greenland Ice Sheet to sea level over the next millennium
journal, June 2019

  • Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
  • Science Advances, Vol. 5, Issue 6
  • DOI: 10.1126/sciadv.aav9396

The Greenland and Antarctic ice sheets under 1.5 °C global warming
journal, November 2018


Acidification diminishes diatom silica production in the Southern Ocean
journal, August 2019

  • Petrou, Katherina; Baker, Kirralee G.; Nielsen, Daniel A.
  • Nature Climate Change, Vol. 9, Issue 10
  • DOI: 10.1038/s41558-019-0557-y

Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP): GeoMIP ozone response
journal, March 2014

  • Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 5
  • DOI: 10.1002/2013JD020566

Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering
journal, February 2018

  • Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.
  • Earth's Future, Vol. 6, Issue 2
  • DOI: 10.1002/2017EF000720

The impact of geoengineering on vegetation in experiment G1 of the GeoMIP
journal, October 2015

  • Glienke, Susanne; Irvine, Peter J.; Lawrence, Mark G.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 19
  • DOI: 10.1002/2015JD024202