DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

Abstract

By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. In this work, we use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additionalmore » degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]
  1. Cornell Univ., Ithaca, NY (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC)
  3. National Center for Atmospheric Research, Boulder, CO (United States)
  4. Climate and Global Dynamics LaboratoryNational Center for Atmospheric Research Boulder CO USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Biological and Environmental Research (BER); Defense Advanced Research Projects Agency (DARPA)
OSTI Identifier:
1430440
Report Number(s):
PNNL-SA-124473
Journal ID: ISSN 2169-897X; 453040135
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 122; Journal Issue: 23; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; geoengineering; stratospheric aerosols; design

Citation Formats

MacMartin, Douglas G., Kravitz, Ben, Tilmes, Simone, Richter, Jadwiga H., Mills, Michael J., Lamarque, Jean‐Francois, Tribbia, Joseph J., and Vitt, Francis. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations. United States: N. p., 2017. Web. doi:10.1002/2017JD026868.
MacMartin, Douglas G., Kravitz, Ben, Tilmes, Simone, Richter, Jadwiga H., Mills, Michael J., Lamarque, Jean‐Francois, Tribbia, Joseph J., & Vitt, Francis. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations. United States. https://doi.org/10.1002/2017JD026868
MacMartin, Douglas G., Kravitz, Ben, Tilmes, Simone, Richter, Jadwiga H., Mills, Michael J., Lamarque, Jean‐Francois, Tribbia, Joseph J., and Vitt, Francis. Thu . "The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations". United States. https://doi.org/10.1002/2017JD026868. https://www.osti.gov/servlets/purl/1430440.
@article{osti_1430440,
title = {The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations},
author = {MacMartin, Douglas G. and Kravitz, Ben and Tilmes, Simone and Richter, Jadwiga H. and Mills, Michael J. and Lamarque, Jean‐Francois and Tribbia, Joseph J. and Vitt, Francis},
abstractNote = {By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. In this work, we use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additional degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters.},
doi = {10.1002/2017JD026868},
journal = {Journal of Geophysical Research: Atmospheres},
number = 23,
volume = 122,
place = {United States},
year = {Thu Dec 07 00:00:00 EST 2017},
month = {Thu Dec 07 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dynamics of the coupled human–climate system resulting from closed-loop control of solar geoengineering
journal, June 2013


The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
journal, August 2011


Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall
journal, March 2013

  • Haywood, Jim M.; Jones, Andy; Bellouin, Nicolas
  • Nature Climate Change, Vol. 3, Issue 7
  • DOI: 10.1038/nclimate1857

The frequency response of temperature and precipitation in a climate model: CLIMATE FREQUENCY RESPONSE
journal, August 2011

  • MacMynowski, Douglas G.; Shin, Ho-Jeong; Caldeira, Ken
  • Geophysical Research Letters, Vol. 38, Issue 16
  • DOI: 10.1029/2011GL048623

Emergence of healing in the Antarctic ozone layer
journal, June 2016


Regional climate responses to geoengineering with tropical and Arctic SO 2 injections
journal, January 2008

  • Robock, Alan; Oman, Luke; Stenchikov, Georgiy L.
  • Journal of Geophysical Research, Vol. 113, Issue D16
  • DOI: 10.1029/2008JD010050

Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions
journal, January 2009

  • Kokkola, H.; Hommel, R.; Kazil, J.
  • Geoscientific Model Development, Vol. 2, Issue 2
  • DOI: 10.5194/gmd-2-97-2009

Solar geoengineering using solid aerosol in the stratosphere
journal, January 2015

  • Weisenstein, D. K.; Keith, D. W.; Dykema, J. A.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 20
  • DOI: 10.5194/acp-15-11835-2015

Geoengineering as an optimization problem
journal, July 2010


Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM)
journal, December 2017

  • Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD027006

First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives
journal, December 2017

  • Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026874

Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS
journal, March 2016

  • Mills, Michael J.; Schmidt, Anja; Easter, Richard
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 5
  • DOI: 10.1002/2015JD024290

Stratospheric solar geoengineering without ozone loss
journal, December 2016

  • Keith, David W.; Weisenstein, Debra K.; Dykema, John A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 52
  • DOI: 10.1073/pnas.1615572113

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO 2 Injections
journal, December 2017

  • Richter, Jadwiga H.; Tilmes, Simone; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026912

Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles: Steerability of Stratospheric SRM
journal, September 2016

  • Benduhn, François; Schallock, Jennifer; Lawrence, Mark G.
  • Geophysical Research Letters, Vol. 43, Issue 18
  • DOI: 10.1002/2016GL070701

The impact of geoengineering aerosols on stratospheric temperature and ozone
journal, October 2009


The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes
journal, May 2008


Microphysical simulations of large volcanic eruptions: Pinatubo and Toba: MICROPHYSICS OF PINATUBO/TOBA ERUPTIONS
journal, February 2013

  • English, Jason M.; Toon, Owen B.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 4
  • DOI: 10.1002/jgrd.50196

Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols
journal, July 2014

  • Kalidindi, Sirisha; Bala, Govindasamy; Modak, Angshuman
  • Climate Dynamics, Vol. 44, Issue 9-10
  • DOI: 10.1007/s00382-014-2240-3

Regional climate response to solar-radiation management
journal, July 2010

  • Ricke, Katharine L.; Morgan, M. Granger; Allen, Myles R.
  • Nature Geoscience, Vol. 3, Issue 8
  • DOI: 10.1038/ngeo915

What is the limit of climate engineering by stratospheric injection of SO 2 ?
journal, January 2015


A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes
journal, September 2015

  • Crook, J. A.; Jackson, L. S.; Osprey, S. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 18
  • DOI: 10.1002/2015JD023269

Geoengineering with stratospheric aerosols: What do we not know after a decade of research?: GEOENGINEERING: WHAT DO WE NOT KNOW?
journal, November 2016

  • MacMartin, Douglas G.; Kravitz, Ben; Long, Jane C. S.
  • Earth's Future, Vol. 4, Issue 11
  • DOI: 10.1002/2016EF000418

Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft: AEROSOL FROM CONDENSIBLE VAPOR
journal, September 2010

  • Pierce, Jeffrey R.; Weisenstein, Debra K.; Heckendorn, Patricia
  • Geophysical Research Letters, Vol. 37, Issue 18
  • DOI: 10.1029/2010GL043975

Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration
journal, September 2013


Climate response to imposed solar radiation reductions in high latitudes
journal, January 2013

  • MacCracken, M. C.; Shin, H. -J.; Caldeira, K.
  • Earth System Dynamics, Vol. 4, Issue 2
  • DOI: 10.5194/esd-4-301-2013

Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing
journal, October 2012

  • MacMartin, Douglas G.; Keith, David W.; Kravitz, Ben
  • Nature Climate Change, Vol. 3, Issue 4
  • DOI: 10.1038/nclimate1722

The Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2011

  • Kravitz, Ben; Robock, Alan; Boucher, Olivier
  • Atmospheric Science Letters, Vol. 12, Issue 2
  • DOI: 10.1002/asl.316

Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time
journal, May 2016

  • Pitari, Giovanni; Di Genova, Glauco; Mancini, Eva
  • Atmosphere, Vol. 7, Issue 6
  • DOI: 10.3390/atmos7060075

Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming
journal, January 2010


Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP): GEOMIP MODEL RESPONSE
journal, August 2013

  • Kravitz, Ben; Caldeira, Ken; Boucher, Olivier
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 15
  • DOI: 10.1002/jgrd.50646

Radiative and climate effects of stratospheric sulfur geoengineering using seasonally varying injection areas
journal, January 2017

  • Laakso, Anton; Korhonen, Hannele; Romakkaniemi, Sami
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 11
  • DOI: 10.5194/acp-17-6957-2017

Geoengineering as a design problem
journal, January 2016

  • Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
  • Earth System Dynamics, Vol. 7, Issue 2
  • DOI: 10.5194/esd-7-469-2016

Sensitivity of Aerosol Distribution and Climate Response to Stratospheric SO 2 Injection Locations
journal, December 2017

  • Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 23
  • DOI: 10.1002/2017JD026888

Geoengineering Earth's radiation balance to mitigate CO 2 -induced climate change
journal, July 2000

  • Govindasamy, Bala; Caldeira, Ken
  • Geophysical Research Letters, Vol. 27, Issue 14
  • DOI: 10.1029/1999GL006086

Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering
journal, January 2012

  • English, J. M.; Toon, O. B.; Mills, M. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 10
  • DOI: 10.5194/acp-12-4775-2012

Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle: CLIMATIC IMPACT OF DIFFERENT SRM METHODS
journal, November 2013

  • Niemeier, U.; Schmidt, H.; Alterskjaer, K.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 21
  • DOI: 10.1002/2013JD020445

Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP): GeoMIP ozone response
journal, March 2014

  • Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 5
  • DOI: 10.1002/2013JD020566

Can regional climate engineering save the summer Arctic sea ice?: TILMES ET AL.
journal, February 2014

  • Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.
  • Geophysical Research Letters, Vol. 41, Issue 3
  • DOI: 10.1002/2013GL058731

Global 2-D intercomparison of sectional and modal aerosol modules
journal, January 2007

  • Weisenstein, D. K.; Penner, J. E.; Herzog, M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 9
  • DOI: 10.5194/acp-7-2339-2007

A multi-model assessment of regional climate disparities caused by solar geoengineering
journal, July 2014


Works referencing / citing this record:

A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies
journal, October 2018


Best Scale for Detecting the Effects of Stratospheric Sulfate Aerosol Geoengineering on Surface Temperature
journal, December 2018

  • Lo, Y. T. E.; Charlton‐Perez, Andrew J.; Highwood, Eleanor J.
  • Earth's Future
  • DOI: 10.1029/2018ef000933

Comparison of the Fast and Slow Climate Response to Three Radiation Management Geoengineering Schemes
journal, November 2018

  • Duan, Lei; Cao, Long; Bala, Govindasamy
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 21
  • DOI: 10.1029/2018jd029034

Holistic Assessment of SO 2 Injections Using CESM1(WACCM): Introduction to the Special Issue
journal, January 2019

  • Kravitz, Ben; MacMartin, Douglas G.; Tilmes, Simone
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 2
  • DOI: 10.1029/2018jd029293

Climate Response to Pulse Versus Sustained Stratospheric Aerosol Forcing
journal, August 2019

  • Duan, Lei; Cao, Long; Bala, Govindasamy
  • Geophysical Research Letters, Vol. 46, Issue 15
  • DOI: 10.1029/2019gl083701

Mission-driven research for stratospheric aerosol geoengineering
journal, January 2019

  • MacMartin, Douglas G.; Kravitz, Ben
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 4
  • DOI: 10.1073/pnas.1811022116

Technical characteristics of a solar geoengineering deployment and implications for governance
journal, September 2019


Stratospheric aerosol injection tactics and costs in the first 15 years of deployment
journal, November 2018


Multiple input control strategies for robust and adaptive climate engineering in a low-order 3-box model
journal, September 2018

  • Bonetti, F.; McInnes, C.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 474, Issue 2217
  • DOI: 10.1098/rspa.2018.0447

Retrieval of volcanic and man-made stratospheric aerosols from orbital polarimetric measurements
journal, January 2019

  • Mishchenko, Michael I.; Dlugach, Janna M.; Lacis, Andrew A.
  • Optics Express, Vol. 27, Issue 4
  • DOI: 10.1364/oe.27.00a158

Upper tropospheric ice sensitivity to sulfate geoengineering
journal, January 2018

  • Visioni, Daniele; Pitari, Giovanni; di Genova, Glauco
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14867-2018

Global streamflow and flood response to stratospheric aerosol geoengineering
journal, January 2018


Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO 2 injection studied with the LMDZ-S3A model
journal, January 2018

  • Kleinschmitt, Christoph; Boucher, Olivier; Platt, Ulrich
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 4
  • DOI: 10.5194/acp-18-2769-2018

Exploring accumulation-mode H 2 SO 4 versus SO 2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model
journal, January 2019

  • Vattioni, Sandro; Weisenstein, Debra; Keith, David
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 7
  • DOI: 10.5194/acp-19-4877-2019

Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer
journal, January 2019

  • Krishnamohan, Krishna-Pillai Sukumara-Pillai; Bala, Govindasamy; Cao, Long
  • Earth System Dynamics, Vol. 10, Issue 4
  • DOI: 10.5194/esd-10-885-2019