DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling

Abstract

The implementation of 5G-and-beyond networks requires faster, high-performance, and power-efficient semiconductor devices, which are only possible with materials that can support higher frequencies. Gallium nitride (GaN) power amplifiers are essential for 5G-and-beyond technologies since they provide the desired combination of high frequency and high power. These applications along with terrestrial hub and backhaul communications at high power output can present severe heat removal challenges. The cooling of GaN devices with diamond as the heat spreader has gained significant momentum since device self-heating limits GaN’s performance. However, one of the significant challenges in integrating polycrystalline diamond on GaN devices is maintaining the device performance while achieving a low diamond/GaN channel thermal boundary resistance. In this study, we achieved a record-low thermal boundary resistance of around 3.1 ± 0.7 m2 K/GW at the diamond/Si3N4/GaN interface, which is the closest to theoretical prediction to date. The diamond was integrated within ~1 nm of the GaN channel layer without degrading the channel’s electrical behavior. Furthermore, we successfully minimized the residual stress in the diamond layer, enabling more isotropic polycrystalline diamond growth on GaN with thicknesses >2 μm and a ~1.9 μm lateral grain size. More isotropic grains can spread the heat in both verticalmore » and lateral directions efficiently. Using transient thermoreflectance, the thermal conductivity of the grains was measured to be 638 ± 48 W/m K, which when combined with the record-low thermal boundary resistance makes it a leading-edge achievement.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [3]; ORCiD logo [2];  [1]
  1. Stanford Univ., CA (United States)
  2. Univ. of Bristol (United Kingdom)
  3. Georgia Institute of Technology, Atlanta, GA (United States)
  4. Univ. of California, Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Ultra Materials for a Resilient, Smart Electricity Grid (ULTRA)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Department of the Navy, Office of Naval Research (ONR)
OSTI Identifier:
1981982
Grant/Contract Number:  
N00014-19-1-2611-P00004; ASUB00000682-01
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 13; Journal Issue: 50; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Science & Technology - Other Topics; Materials Science; Polycrystalline diamond; N-polar GaN; Thermal management; Thermal boundary resistance; 5G networks

Citation Formats

Malakoutian, Mohamadali, Field, Daniel E., Hines, Nicholas J., Pasayat, Shubhra, Graham, Samuel, Kuball, Martin, and Chowdhury, Srabanti. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. United States: N. p., 2021. Web. doi:10.1021/acsami.1c13833.
Malakoutian, Mohamadali, Field, Daniel E., Hines, Nicholas J., Pasayat, Shubhra, Graham, Samuel, Kuball, Martin, & Chowdhury, Srabanti. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. United States. https://doi.org/10.1021/acsami.1c13833
Malakoutian, Mohamadali, Field, Daniel E., Hines, Nicholas J., Pasayat, Shubhra, Graham, Samuel, Kuball, Martin, and Chowdhury, Srabanti. Tue . "Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling". United States. https://doi.org/10.1021/acsami.1c13833. https://www.osti.gov/servlets/purl/1981982.
@article{osti_1981982,
title = {Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling},
author = {Malakoutian, Mohamadali and Field, Daniel E. and Hines, Nicholas J. and Pasayat, Shubhra and Graham, Samuel and Kuball, Martin and Chowdhury, Srabanti},
abstractNote = {The implementation of 5G-and-beyond networks requires faster, high-performance, and power-efficient semiconductor devices, which are only possible with materials that can support higher frequencies. Gallium nitride (GaN) power amplifiers are essential for 5G-and-beyond technologies since they provide the desired combination of high frequency and high power. These applications along with terrestrial hub and backhaul communications at high power output can present severe heat removal challenges. The cooling of GaN devices with diamond as the heat spreader has gained significant momentum since device self-heating limits GaN’s performance. However, one of the significant challenges in integrating polycrystalline diamond on GaN devices is maintaining the device performance while achieving a low diamond/GaN channel thermal boundary resistance. In this study, we achieved a record-low thermal boundary resistance of around 3.1 ± 0.7 m2 K/GW at the diamond/Si3N4/GaN interface, which is the closest to theoretical prediction to date. The diamond was integrated within ~1 nm of the GaN channel layer without degrading the channel’s electrical behavior. Furthermore, we successfully minimized the residual stress in the diamond layer, enabling more isotropic polycrystalline diamond growth on GaN with thicknesses >2 μm and a ~1.9 μm lateral grain size. More isotropic grains can spread the heat in both vertical and lateral directions efficiently. Using transient thermoreflectance, the thermal conductivity of the grains was measured to be 638 ± 48 W/m K, which when combined with the record-low thermal boundary resistance makes it a leading-edge achievement.},
doi = {10.1021/acsami.1c13833},
journal = {ACS Applied Materials and Interfaces},
number = 50,
volume = 13,
place = {United States},
year = {Tue Dec 07 00:00:00 EST 2021},
month = {Tue Dec 07 00:00:00 EST 2021}
}

Works referenced in this record:

Demonstration of Constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs
journal, January 2018

  • Romanczyk, Brian; Wienecke, Steven; Guidry, Matthew
  • IEEE Transactions on Electron Devices, Vol. 65, Issue 1
  • DOI: 10.1109/TED.2017.2770087

Analysis of MOCVD SiNx Passivated N-Polar GaN MIS-HEMTs on Sapphire With High $f_{max}\cdot V_{DS,Q}$
journal, March 2018


Thermal characterization of GaN-on-diamond substrates for HEMT applications
conference, May 2012

  • Cho, Jungwan; Bozorg-Grayeli, Elah
  • 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
  • DOI: 10.1109/ITHERM.2012.6231463

Near-junction heat spreaders for hot spot thermal management of high power density electronic devices
journal, October 2019

  • Soleimanzadeh, R.; Khadar, R. A.; Naamoun, M.
  • Journal of Applied Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.5123615

Specific Heat of Diamond at Low Temperatures
journal, October 1953

  • Berman, R.; Poulter, J.
  • The Journal of Chemical Physics, Vol. 21, Issue 10
  • DOI: 10.1063/1.1698710

Diamond overgrown InAlN/GaN HEMT
journal, April 2011


Near-Junction Thermal Management: Thermal Conduction in Gallium Nitride Composite Substrates
journal, January 2015


Tunable Thermal Energy Transport across Diamond Membranes and Diamond–Si Interfaces by Nanoscale Graphoepitaxy
journal, April 2019

  • Cheng, Zhe; Bai, Tingyu; Shi, Jingjing
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 20
  • DOI: 10.1021/acsami.9b02234

Thermal conductivities of evaporated gold films on silicon and glass
journal, May 1999

  • Chen, George; Hui, Ping
  • Applied Physics Letters, Vol. 74, Issue 20
  • DOI: 10.1063/1.123973

Thermal boundary resistance of direct van der Waals bonded GaN-on-diamond
journal, August 2020

  • Waller, William M.; Pomeroy, James W.; Field, Daniel
  • Semiconductor Science and Technology, Vol. 35, Issue 9
  • DOI: 10.1088/1361-6641/ab9d35

H-Terminated Polycrystalline Diamond p-Channel Transistors on GaN-on-Silicon
journal, January 2020

  • Soleimanzadeh, Reza; Naamoun, Mehdi; Khadar, Riyaz Abdul
  • IEEE Electron Device Letters, Vol. 41, Issue 1
  • DOI: 10.1109/LED.2019.2953245

Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface
journal, October 2015


Study of self-heating effects, temperature-dependent modeling, and pulsed load-pull measurements on GaN HEMTs
journal, January 2001

  • Nuttinck, S.; Gebara, E.; Laskar, J.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 49, Issue 12
  • DOI: 10.1109/22.971629

W-Band Power Performance of SiN-Passivated N-Polar GaN Deep Recess HEMTs
journal, March 2020

  • Romanczyk, Brian; Zheng, Xun; Guidry, Matthew
  • IEEE Electron Device Letters, Vol. 41, Issue 3
  • DOI: 10.1109/LED.2020.2967034

Thermal conductivity and diffusivity of free‐standing silicon nitride thin films
journal, February 1995

  • Zhang, Xiang; Grigoropoulos, Costas P.
  • Review of Scientific Instruments, Vol. 66, Issue 2
  • DOI: 10.1063/1.1145989

Contactless Thermal Boundary Resistance Measurement of GaN-on-Diamond Wafers
journal, October 2014

  • Pomeroy, James W.; Simon, Roland Baranyai; Sun, Huarui
  • IEEE Electron Device Letters, Vol. 35, Issue 10
  • DOI: 10.1109/LED.2014.2350075

Effect of self-heating on electrical characteristics of AlGaN/ GaN HEMT on Si (111) substrate
journal, August 2017

  • Nigam, Adarsh; Bhat, Thirumaleshwara N.; Rajamani, Saravanan
  • AIP Advances, Vol. 7, Issue 8
  • DOI: 10.1063/1.4990868

Thermal Conductivity of Diamond/SiC Nano-Polycrystalline Composites and Phonon Scattering at Interfaces
journal, May 2017


Thermal Characterization of $\hbox{Si}_{3}\hbox{N}_{4}$ Thin Films Using Transient Thermoreflectance Technique
journal, August 2009


The thermal conductivity of polycrystalline diamond films: Effects of isotope content
journal, June 1996

  • Belay, Kalayu; Etzel, Zongyin; Onn, David G.
  • Journal of Applied Physics, Vol. 79, Issue 11
  • DOI: 10.1063/1.362546

Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope
journal, April 1997

  • Hartmann, J.; Voigt, P.; Reichling, M.
  • Journal of Applied Physics, Vol. 81, Issue 7
  • DOI: 10.1063/1.364329

Variations of Acoustic and Diffuse Mismatch Models in Predicting Thermal-Boundary Resistance
journal, April 2000

  • De Bellis, Lisa; Phelan, Patrick E.; Prasher, Ravi S.
  • Journal of Thermophysics and Heat Transfer, Vol. 14, Issue 2
  • DOI: 10.2514/2.6525

A study on the nucleation and MPCVD growth of thin, dense, and contiguous nanocrystalline diamond films on bare and Si 3 N 4 -coated N-polar GaN
journal, November 2019

  • Laurent, Matthew A.; Malakoutian, Mohamadali; Chowdhury, Srabanti
  • Semiconductor Science and Technology, Vol. 35, Issue 1
  • DOI: 10.1088/1361-6641/ab4f16

Evaluation of LPCVD SiNx Gate Dielectric Reliability by TDDB Measurement in Si-Substrate-Based AlGaN/GaN MIS-HEMT
journal, May 2018

  • Qi, Yongle; Zhu, Yumeng; Zhang, Jiang
  • IEEE Transactions on Electron Devices, Vol. 65, Issue 5
  • DOI: 10.1109/TED.2018.2813985

AlGaN/GaN HEMT on Diamond Technology Demonstration
conference, November 2006

  • Jessen, G.; Gillespie, J.; Via, G.
  • 2006 IEEE Compound Semiconductor Integrated Circuit Symposium
  • DOI: 10.1109/CSICS.2006.319952

Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond
journal, May 2016

  • Sood, Aditya; Cho, Jungwan; Hobart, Karl D.
  • Journal of Applied Physics, Vol. 119, Issue 17
  • DOI: 10.1063/1.4948335

N-Polar GaN Cap MISHEMT With Record Power Density Exceeding 6.5 W/mm at 94 GHz
journal, March 2017

  • Wienecke, Steven; Romanczyk, Brian; Guidry, Matthew
  • IEEE Electron Device Letters, Vol. 38, Issue 3
  • DOI: 10.1109/LED.2017.2653192

Recent progress in metal-organic chemical vapor deposition of $\left( 000\bar{1} \right)$ N-polar group-III nitrides
journal, August 2014


Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs
journal, July 2017

  • Zhou, Yan; Ramaneti, Rajesh; Anaya, Julian
  • Applied Physics Letters, Vol. 111, Issue 4
  • DOI: 10.1063/1.4995407

Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures
journal, November 1999

  • Keller, S.; Parish, G.; Fini, P. T.
  • Journal of Applied Physics, Vol. 86, Issue 10
  • DOI: 10.1063/1.371602

N-polar GaN epitaxy and high electron mobility transistors
journal, June 2013

  • Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi, Sansaptak
  • Semiconductor Science and Technology, Vol. 28, Issue 7
  • DOI: 10.1088/0268-1242/28/7/074009

Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling
journal, September 2017

  • Zhou, Yan; Anaya, Julian; Pomeroy, James
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 39
  • DOI: 10.1021/acsami.7b08961

Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers
journal, May 2016

  • Sun, Huarui; Pomeroy, James W.; Simon, Roland B.
  • IEEE Electron Device Letters, Vol. 37, Issue 5
  • DOI: 10.1109/LED.2016.2537835

Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications
journal, March 2015

  • Sun, Huarui; Simon, Roland B.; Pomeroy, James W.
  • Applied Physics Letters, Vol. 106, Issue 11
  • DOI: 10.1063/1.4913430

Electrostatic Grafting of Diamond Nanoparticles: A Versatile Route to Nanocrystalline Diamond Thin Films
journal, November 2009

  • Girard, Hugues A.; Perruchas, Sandrine; Gesset, Céline
  • ACS Applied Materials & Interfaces, Vol. 1, Issue 12
  • DOI: 10.1021/am900458g

A comparative study of effects of SiNx deposition method on AlGaN/GaN heterostructure field-effect transistors
journal, February 2009

  • Higashiwaki, Masataka; Chen, Zhen; Chu, Rongming
  • Applied Physics Letters, Vol. 94, Issue 5
  • DOI: 10.1063/1.3079798

Realization of high quality silicon nitride deposition at low temperatures
journal, September 2019

  • Surana, V. K.; Bhardwaj, N.; Rawat, A.
  • Journal of Applied Physics, Vol. 126, Issue 11
  • DOI: 10.1063/1.5114927

40-W/mm Double Field-plated GaN HEMTs
conference, June 2006


Influence of strain on thermal conductivity of silicon nitride thin films
journal, March 2012

  • Alam, M. T.; Manoharan, M. P.; Haque, M. A.
  • Journal of Micromechanics and Microengineering, Vol. 22, Issue 4
  • DOI: 10.1088/0960-1317/22/4/045001

AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy
journal, April 2011

  • Hirama, Kazuyuki; Taniyasu, Yoshitaka; Kasu, Makoto
  • Applied Physics Letters, Vol. 98, Issue 16
  • DOI: 10.1063/1.3574531

Investigation of In Situ SiN as Gate Dielectric and Surface Passivation for GaN MISHEMTs
journal, March 2017

  • Jiang, Huaxing; Liu, Chao; Chen, Yuying
  • IEEE Transactions on Electron Devices, Vol. 64, Issue 3
  • DOI: 10.1109/TED.2016.2638855

Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices
journal, June 2018

  • Yates, Luke; Anderson, Jonathan; Gu, Xing
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 28
  • DOI: 10.1021/acsami.8b07014

High frequency N-polar GaN planar MIS-HEMTs on sapphire with high breakdown and low dispersion
conference, August 2016


Measurement and calculation of the thermal expansion coefficient of diamond
journal, April 1997


Phonon conduction in GaN-diamond composite substrates
journal, February 2017

  • Cho, Jungwan; Francis, Daniel; Altman, David H.
  • Journal of Applied Physics, Vol. 121, Issue 5
  • DOI: 10.1063/1.4975468

Effect of grain size of polycrystalline diamond on its heat spreading properties
journal, May 2016

  • Simon, Roland B.; Anaya, Julian; Faili, Firooz
  • Applied Physics Express, Vol. 9, Issue 6
  • DOI: 10.7567/APEX.9.061302

Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond
journal, November 2020

  • Field, Daniel E.; Cuenca, Jerome A.; Smith, Matthew
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 48
  • DOI: 10.1021/acsami.0c10129

Structural Defects and Their Relationship to Nucleation of Gan Thin Films
journal, January 1996

  • Gian, Weida; Skowronski, Marek; Rohrer, Greg S.
  • MRS Proceedings, Vol. 423
  • DOI: 10.1557/proc-423-475

Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films
journal, June 2006

  • Angadi, Maki A.; Watanabe, Taku; Bodapati, Arun
  • Journal of Applied Physics, Vol. 99, Issue 11, Article No. 114301
  • DOI: 10.1063/1.2199974

Development of Polycrystalline Diamond Compatible with the Latest N-Polar GaN mm-Wave Technology
journal, January 2021

  • Malakoutian, Mohamadali; Ren, Chenhao; Woo, Kelly
  • Crystal Growth & Design, Vol. 21, Issue 5
  • DOI: 10.1021/acs.cgd.0c01319