DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Planar 2D wireframe DNA origami

Abstract

Two-dimensional (2D) DNA origami is widely used for applications ranging from excitonics to single-molecule biophysics. Conventional, single-layer 2D DNA origami exhibits flexibility and curvature in solution; however, that may limit its suitability as a 2D structural template. In contrast, 2D wireframe DNA origami rendered with six-helix bundle edges offers local control over duplex orientations with enhanced in-plane rigidity. Here, we investigate the 3D structure of these assemblies using cryo–electron microscopy (cryo-EM). 3D reconstructions reveal a high degree of planarity and homogeneity in solution for polygonal objects with and without internal mesh, enabling 10-Å resolution for a triangle. Coarse-grained simulations were in agreement with cryo-EM data, offering molecular structural insight into this class of 2D DNA origami. Our results suggest that these assemblies may be valuable for 2D material applications and geometries that require high structural fidelity together with local control over duplex orientations, rather than parallel duplex assembly.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [1]
  1. Massachusetts Institute of Technology (MIT), Cambridge, MA (United States)
  2. Stanford University, CA (United States); University of Science and Technology of China, Hefei (China)
  3. Massachusetts Institute of Technology (MIT), Cambridge, MA (United States); Jeonbuk National University, Jeonju (Korea, Republic of)
  4. University of Oxford (United Kingdom)
  5. Stanford University, CA (United States); SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Department of the Navy, Office of Naval Research (ONR); Army Research Office (ARO); Alexander von Humboldt Foundation; Engineering and Physical Sciences Research Council (EPSRC)
OSTI Identifier:
1908739
Grant/Contract Number:  
AC02-76SF00515; CBET-1729397; CCF-1956054; N00014-21-1-4013; N00014-20-1-2084; W911NF-19-2-0026; EP/L015722/1
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 8; Journal Issue: 20; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Wang, Xiao, Li, Shanshan, Jun, Hyungmin, John, Torsten, Zhang, Kaiming, Fowler, Hannah, Doye, Jonathan P.K., Chiu, Wah, and Bathe, Mark. Planar 2D wireframe DNA origami. United States: N. p., 2022. Web. doi:10.1126/sciadv.abn0039.
Wang, Xiao, Li, Shanshan, Jun, Hyungmin, John, Torsten, Zhang, Kaiming, Fowler, Hannah, Doye, Jonathan P.K., Chiu, Wah, & Bathe, Mark. Planar 2D wireframe DNA origami. United States. https://doi.org/10.1126/sciadv.abn0039
Wang, Xiao, Li, Shanshan, Jun, Hyungmin, John, Torsten, Zhang, Kaiming, Fowler, Hannah, Doye, Jonathan P.K., Chiu, Wah, and Bathe, Mark. Fri . "Planar 2D wireframe DNA origami". United States. https://doi.org/10.1126/sciadv.abn0039. https://www.osti.gov/servlets/purl/1908739.
@article{osti_1908739,
title = {Planar 2D wireframe DNA origami},
author = {Wang, Xiao and Li, Shanshan and Jun, Hyungmin and John, Torsten and Zhang, Kaiming and Fowler, Hannah and Doye, Jonathan P.K. and Chiu, Wah and Bathe, Mark},
abstractNote = {Two-dimensional (2D) DNA origami is widely used for applications ranging from excitonics to single-molecule biophysics. Conventional, single-layer 2D DNA origami exhibits flexibility and curvature in solution; however, that may limit its suitability as a 2D structural template. In contrast, 2D wireframe DNA origami rendered with six-helix bundle edges offers local control over duplex orientations with enhanced in-plane rigidity. Here, we investigate the 3D structure of these assemblies using cryo–electron microscopy (cryo-EM). 3D reconstructions reveal a high degree of planarity and homogeneity in solution for polygonal objects with and without internal mesh, enabling 10-Å resolution for a triangle. Coarse-grained simulations were in agreement with cryo-EM data, offering molecular structural insight into this class of 2D DNA origami. Our results suggest that these assemblies may be valuable for 2D material applications and geometries that require high structural fidelity together with local control over duplex orientations, rather than parallel duplex assembly.},
doi = {10.1126/sciadv.abn0039},
journal = {Science Advances},
number = 20,
volume = 8,
place = {United States},
year = {Fri May 20 00:00:00 EDT 2022},
month = {Fri May 20 00:00:00 EDT 2022}
}

Works referenced in this record:

Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration
journal, May 2014

  • Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M.
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500612d

In situ structure and dynamics of DNA origami determined through molecular dynamics simulations
journal, November 2013

  • Yoo, J.; Aksimentiev, A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 50
  • DOI: 10.1073/pnas.1316521110

Rapid prototyping of 3D DNA-origami shapes with caDNAno
journal, June 2009

  • Douglas, Shawn M.; Marblestone, Adam H.; Teerapittayanon, Surat
  • Nucleic Acids Research, Vol. 37, Issue 15
  • DOI: 10.1093/nar/gkp436

Folding DNA into Twisted and Curved Nanoscale Shapes
journal, August 2009


TacoxDNA: A user‐friendly web server for simulations of complex DNA structures, from single strands to origami
journal, July 2019

  • Suma, Antonio; Poppleton, Erik; Matthies, Michael
  • Journal of Computational Chemistry, Vol. 40, Issue 29
  • DOI: 10.1002/jcc.26029

DNA-Directed Artificial Light-Harvesting Antenna
journal, August 2011

  • Dutta, Palash K.; Varghese, Reji; Nangreave, Jeanette
  • Journal of the American Chemical Society, Vol. 133, Issue 31
  • DOI: 10.1021/ja1115138

Programming Light-Harvesting Efficiency Using DNA Origami
journal, March 2016


Coarse-grained modelling of the structural properties of DNA origami
journal, January 2019

  • Snodin, Benedict E. K.; Schreck, John S.; Romano, Flavio
  • Nucleic Acids Research, Vol. 47, Issue 3
  • DOI: 10.1093/nar/gky1304

DNA Origami as a Carrier for Circumvention of Drug Resistance
journal, August 2012

  • Jiang, Qiao; Song, Chen; Nangreave, Jeanette
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja304263n

Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution
journal, December 2020


Automated sequence design of 2D wireframe DNA origami with honeycomb edges
journal, November 2019


Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy
journal, February 2020


Gigadalton-scale shape-programmable DNA assemblies
journal, December 2017

  • Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik
  • Nature, Vol. 552, Issue 7683
  • DOI: 10.1038/nature24651

Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT
journal, February 2014

  • Jungmann, Ralf; Avendaño, Maier S.; Woehrstein, Johannes B.
  • Nature Methods, Vol. 11, Issue 3
  • DOI: 10.1038/nmeth.2835

DNA Origami Chromophore Scaffold Exploiting HomoFRET Energy Transport to Create Molecular Photonic Wires
journal, March 2020

  • Klein, William P.; Rolczynski, Brian S.; Oliver, Sean M.
  • ACS Applied Nano Materials, Vol. 3, Issue 4
  • DOI: 10.1021/acsanm.0c00038

Capturing transient antibody conformations with DNA origami epitopes
journal, June 2020


Shape-Controlled Nanofabrication of Conducting Polymer on Planar DNA Templates
journal, June 2014

  • Wang, Zhen-Gang; Liu, Qing; Ding, Baoquan
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm501445u

Single-Molecule Imaging of Dynamic Motions of Biomolecules in DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy
journal, March 2014

  • Endo, Masayuki; Sugiyama, Hiroshi
  • Accounts of Chemical Research, Vol. 47, Issue 6
  • DOI: 10.1021/ar400299m

Routing of individual polymers in designed patterns
journal, August 2015

  • Knudsen, Jakob Bach; Liu, Lei; Bank Kodal, Anne Louise
  • Nature Nanotechnology, Vol. 10, Issue 10
  • DOI: 10.1038/nnano.2015.190

Programmed coherent coupling in a synthetic DNA-based excitonic circuit
journal, November 2017

  • Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi
  • Nature Materials, Vol. 17, Issue 2
  • DOI: 10.1038/nmat5033

Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation
journal, May 2020

  • Poppleton, Erik; Bohlin, Joakim; Matthies, Michael
  • Nucleic Acids Research, Vol. 48, Issue 12
  • DOI: 10.1093/nar/gkaa417

Autonomously designed free-form 2D DNA origami
journal, January 2019


Advancing Biophysics Using DNA Origami
journal, May 2021


Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures
journal, December 2011

  • Kim, Do-Nyun; Kilchherr, Fabian; Dietz, Hendrik
  • Nucleic Acids Research, Vol. 40, Issue 7
  • DOI: 10.1093/nar/gkr1173

Role of nanoscale antigen organization on B-cell activation probed using DNA origami
journal, June 2020

  • Veneziano, Rémi; Moyer, Tyson J.; Stone, Matthew B.
  • Nature Nanotechnology, Vol. 15, Issue 8
  • DOI: 10.1038/s41565-020-0719-0

Optimal Determination of Particle Orientation, Absolute Hand, and Contrast Loss in Single-particle Electron Cryomicroscopy
journal, October 2003


Diamond family of nanoparticle superlattices
journal, February 2016


Design and Characterization of 1D Nanotubes and 2D Periodic Arrays Self-Assembled from DNA Multi-Helix Bundles
journal, January 2012

  • Wang, Tong; Schiffels, Daniel; Martinez Cuesta, Sergio
  • Journal of the American Chemical Society, Vol. 134, Issue 3
  • DOI: 10.1021/ja207976q

DNA Origami as an In Vivo Drug Delivery Vehicle for Cancer Therapy
journal, June 2014


Roadmap on biological pathways for electronic nanofabrication and materials
journal, January 2019


Engineering and mapping nanocavity emission via precision placement of DNA origami
journal, July 2016

  • Gopinath, Ashwin; Miyazono, Evan; Faraon, Andrei
  • Nature, Vol. 535, Issue 7612
  • DOI: 10.1038/nature18287

Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering
journal, March 2018


Construction of a DNA Origami Based Molecular Electro-optical Modulator
journal, February 2018


Photophysics of J-Aggregate-Mediated Energy Transfer on DNA
journal, November 2017

  • Banal, James L.; Kondo, Toru; Veneziano, Rémi
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 23
  • DOI: 10.1021/acs.jpclett.7b01898

RELION: Implementation of a Bayesian approach to cryo-EM structure determination
journal, December 2012


Single-molecule chemical reactions on DNA origami
journal, February 2010

  • Voigt, Niels V.; Tørring, Thomas; Rotaru, Alexandru
  • Nature Nanotechnology, Vol. 5, Issue 3
  • DOI: 10.1038/nnano.2010.5

FRET efficiency and antenna effect in multi-color DNA origami-based light harvesting systems
journal, January 2017


Optimized Assembly and Covalent Coupling of Single-Molecule DNA Origami Nanoarrays
journal, November 2014

  • Gopinath, Ashwin; Rothemund, Paul W. K.
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn506014s

Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami
journal, September 2021

  • Jun, Hyungmin; Wang, Xiao; Parsons, Molly F.
  • Nucleic Acids Research, Vol. 49, Issue 18
  • DOI: 10.1093/nar/gkab762

Self-assembly of three-dimensional prestressed tensegrity structures from DNA
journal, June 2010

  • Liedl, Tim; Högberg, Björn; Tytell, Jessica
  • Nature Nanotechnology, Vol. 5, Issue 7
  • DOI: 10.1038/nnano.2010.107

OxDNA.org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures
journal, May 2021

  • Poppleton, Erik; Romero, Roger; Mallya, Aatmik
  • Nucleic Acids Research, Vol. 49, Issue W1
  • DOI: 10.1093/nar/gkab324

Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition
journal, November 2019


DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
journal, March 2012

  • Kuzyk, Anton; Schreiber, Robert; Fan, Zhiyuan
  • Nature, Vol. 483, Issue 7389
  • DOI: 10.1038/nature10889

Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials
journal, June 2016

  • Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03966

Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts
journal, April 2016


A comparison between parallelization approaches in molecular dynamics simulations on GPUs
journal, October 2014

  • Rovigatti, Lorenzo; Šulc, Petr; Reguly, István Z.
  • Journal of Computational Chemistry, Vol. 36, Issue 1
  • DOI: 10.1002/jcc.23763

Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering
journal, May 2018

  • Baker, Matthew A. B.; Tuckwell, Andrew J.; Berengut, Jonathan F.
  • ACS Nano, Vol. 12, Issue 6
  • DOI: 10.1021/acsnano.8b01669

A primer to scaffolded DNA origami
journal, February 2011

  • Castro, Carlos Ernesto; Kilchherr, Fabian; Kim, Do-Nyun
  • Nature Methods, Vol. 8, Issue 3
  • DOI: 10.1038/nmeth.1570

Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles
journal, December 2011


Programming Structured DNA Assemblies to Probe Biophysical Processes
journal, May 2019


cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
journal, February 2017

  • Punjani, Ali; Rubinstein, John L.; Fleet, David J.
  • Nature Methods, Vol. 14, Issue 3
  • DOI: 10.1038/nmeth.4169

A Single Molecule Polyphenylene-Vinylene Photonic Wire
journal, May 2021


Self-Assembled DNA Photonic Wire for Long-Range Energy Transfer
journal, November 2008

  • Hannestad, Jonas K.; Sandin, Peter; Albinsson, Bo
  • Journal of the American Chemical Society, Vol. 130, Issue 47
  • DOI: 10.1021/ja803407t

Bioproduction of pure, kilobase-scale single-stranded DNA
journal, April 2019


Self-assembly of DNA into nanoscale three-dimensional shapes
journal, May 2009

  • Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08016