DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges

Abstract

3D polyhedral wireframe DNA nanoparticles (DNA-NPs) fabricated using scaffolded DNA origami offer complete and independent control over NP size, structure, and asymmetric functionalization on the 10–100 nm scale. However, the complex DNA sequence design needed for the synthesis of these versatile DNA-NPs has limited their widespread use to date. While the automated sequence design algorithms DAEDALUS and vHelix-BSCOR apply to DNA-NPs synthesized using either uniformly dual or hybrid single-dual duplex edges, respectively, these DNA-NPs are relatively compliant mechanically and are therefore of limited utility for some applications. Further, these algorithms are incapable of handling DNA-NP edge designs composed of more than two duplexes, which are needed to enhance DNA-NP mechanical stiffness. As an alternative, here we introduce the scaffolded DNA origami sequence design algorithm TALOS, which is a generalized procedure for the fully automated design of wireframe 3D polyhedra composed of edges of any cross section with an even number of duplexes, and apply it to DNA-NPs composed uniformly of single honeycomb edges. We also introduce a multiway vertex design that enables the fabrication of DNA-NPs with arbitrary edge lengths and vertex angles and apply it to synthesize a highly asymmetric origami object. Sequence designs are demonstrated to fold robustlymore » into target DNA-NP shapes with high folding efficiency and structural fidelity that is verified using single particle cryo-electron microscopy and 3D reconstruction. Furthermore, in order to test its generality, we apply TALOS to design an in silico library of over 200 DNA-NPs of distinct symmetries and sizes, and for broad impact, we also provide the software as open source for the generation of custom NP designs.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [2];  [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1507153
Grant/Contract Number:  
AC02-76SF00515; CCF-1564025; SC0016353; N000141210621; N000141612953; N000141512830; N000141310664; CMMI-1334109; P41GM103832
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 13; Journal Issue: 2; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 3D cryo-EM reconstruction; DNA nanotechnology; molecular dynamics; scaffolded DNA origami; six-helix bundle; wireframe origami

Citation Formats

Jun, Hyungmin, Shepherd, Tyson R., Zhang, Kaiming, Bricker, William P., Li, Shanshan, Chiu, Wah, and Bathe, Mark. Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. United States: N. p., 2019. Web. doi:10.1021/acsnano.8b08671.
Jun, Hyungmin, Shepherd, Tyson R., Zhang, Kaiming, Bricker, William P., Li, Shanshan, Chiu, Wah, & Bathe, Mark. Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. United States. https://doi.org/10.1021/acsnano.8b08671
Jun, Hyungmin, Shepherd, Tyson R., Zhang, Kaiming, Bricker, William P., Li, Shanshan, Chiu, Wah, and Bathe, Mark. Thu . "Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges". United States. https://doi.org/10.1021/acsnano.8b08671. https://www.osti.gov/servlets/purl/1507153.
@article{osti_1507153,
title = {Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges},
author = {Jun, Hyungmin and Shepherd, Tyson R. and Zhang, Kaiming and Bricker, William P. and Li, Shanshan and Chiu, Wah and Bathe, Mark},
abstractNote = {3D polyhedral wireframe DNA nanoparticles (DNA-NPs) fabricated using scaffolded DNA origami offer complete and independent control over NP size, structure, and asymmetric functionalization on the 10–100 nm scale. However, the complex DNA sequence design needed for the synthesis of these versatile DNA-NPs has limited their widespread use to date. While the automated sequence design algorithms DAEDALUS and vHelix-BSCOR apply to DNA-NPs synthesized using either uniformly dual or hybrid single-dual duplex edges, respectively, these DNA-NPs are relatively compliant mechanically and are therefore of limited utility for some applications. Further, these algorithms are incapable of handling DNA-NP edge designs composed of more than two duplexes, which are needed to enhance DNA-NP mechanical stiffness. As an alternative, here we introduce the scaffolded DNA origami sequence design algorithm TALOS, which is a generalized procedure for the fully automated design of wireframe 3D polyhedra composed of edges of any cross section with an even number of duplexes, and apply it to DNA-NPs composed uniformly of single honeycomb edges. We also introduce a multiway vertex design that enables the fabrication of DNA-NPs with arbitrary edge lengths and vertex angles and apply it to synthesize a highly asymmetric origami object. Sequence designs are demonstrated to fold robustly into target DNA-NP shapes with high folding efficiency and structural fidelity that is verified using single particle cryo-electron microscopy and 3D reconstruction. Furthermore, in order to test its generality, we apply TALOS to design an in silico library of over 200 DNA-NPs of distinct symmetries and sizes, and for broad impact, we also provide the software as open source for the generation of custom NP designs.},
doi = {10.1021/acsnano.8b08671},
journal = {ACS Nano},
number = 2,
volume = 13,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Folding DNA to create nanoscale shapes and patterns
journal, March 2006


DNA Origami with Complex Curvatures in Three-Dimensional Space
journal, April 2011


Complex wireframe DNA origami nanostructures with multi-arm junction vertices
journal, July 2015


Computer-Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes
journal, June 2016

  • Benson, Erik; Mohammed, Abdulmelik; Bosco, Alessandro
  • Angewandte Chemie International Edition, Vol. 55, Issue 31
  • DOI: 10.1002/anie.201602446

Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns
journal, December 2017

  • Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu
  • Nature, Vol. 552, Issue 7683
  • DOI: 10.1038/nature24655

Autonomously designed free-form 2D DNA origami
journal, January 2019


Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra
journal, March 2008


Self-assembly of DNA into nanoscale three-dimensional shapes
journal, May 2009

  • Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08016

Folding DNA into Twisted and Curved Nanoscale Shapes
journal, August 2009


Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT
journal, March 2014


DNA rendering of polyhedral meshes at the nanoscale
journal, July 2015

  • Benson, Erik; Mohammed, Abdulmelik; Gardell, Johan
  • Nature, Vol. 523, Issue 7561
  • DOI: 10.1038/nature14586

Designer nanoscale DNA assemblies programmed from the top down
journal, May 2016


Design and Synthesis of Triangulated DNA Origami Trusses
journal, February 2016


Gigadalton-scale shape-programmable DNA assemblies
journal, December 2017

  • Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik
  • Nature, Vol. 552, Issue 7683
  • DOI: 10.1038/nature24651

Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components
journal, December 2017

  • Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.
  • Nature, Vol. 552, Issue 7683
  • DOI: 10.1038/nature24648

Algorithmic Self-Assembly of DNA Sierpinski Triangles
journal, December 2004


Dynamic DNA nanotechnology using strand-displacement reactions
journal, January 2011

  • Zhang, David Yu; Seelig, Georg
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.957

Building DNA Nanostructures for Molecular Computation, Templated Assembly, and Biological Applications
journal, April 2014

  • Rangnekar, Abhijit; LaBean, Thomas H.
  • Accounts of Chemical Research, Vol. 47, Issue 6
  • DOI: 10.1021/ar500023b

A spatially localized architecture for fast and modular DNA computing
journal, July 2017

  • Chatterjee, Gourab; Dalchau, Neil; Muscat, Richard A.
  • Nature Nanotechnology, Vol. 12, Issue 9
  • DOI: 10.1038/nnano.2017.127

DNA-Directed Artificial Light-Harvesting Antenna
journal, August 2011

  • Dutta, Palash K.; Varghese, Reji; Nangreave, Jeanette
  • Journal of the American Chemical Society, Vol. 133, Issue 31
  • DOI: 10.1021/ja1115138

Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions
journal, April 2013

  • Wang, Feng; Li, Chuanhao; Chen, Huanjun
  • Journal of the American Chemical Society, Vol. 135, Issue 15
  • DOI: 10.1021/ja310501y

Structure-based model for light-harvesting properties of nucleic acid nanostructures
journal, December 2013

  • Pan, Keyao; Boulais, Etienne; Yang, Lun
  • Nucleic Acids Research, Vol. 42, Issue 4
  • DOI: 10.1093/nar/gkt1269

Programmed coherent coupling in a synthetic DNA-based excitonic circuit
journal, November 2017

  • Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi
  • Nature Materials, Vol. 17, Issue 2
  • DOI: 10.1038/nmat5033

DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires
journal, September 2003


Casting inorganic structures with DNA molds
journal, October 2014


Shape-Controlled Synthesis of Gold Nanostructures Using DNA Origami Molds
journal, October 2014

  • Helmi, Seham; Ziegler, Christoph; Kauert, Dominik J.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503441v

DNA-Mold Templated Assembly of Conductive Gold Nanowires
journal, February 2018


Plasmonic nanostructures through DNA-assisted lithography
journal, February 2018


Programming DNA Tube Circumferences
journal, August 2008


Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles
journal, January 2009


Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials
journal, June 2016

  • Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03966

Diamond family of nanoparticle superlattices
journal, February 2016


A primer to scaffolded DNA origami
journal, February 2011

  • Castro, Carlos Ernesto; Kilchherr, Fabian; Kim, Do-Nyun
  • Nature Methods, Vol. 8, Issue 3
  • DOI: 10.1038/nmeth.1570

DNA double-crossover molecules
journal, April 1993


Assembly and Characterization of 8-Arm and 12-Arm DNA Branched Junctions
journal, July 2007

  • Wang, Xing; Seeman, Nadrian C.
  • Journal of the American Chemical Society, Vol. 129, Issue 26
  • DOI: 10.1021/ja0693441

Rapid prototyping of 3D DNA-origami shapes with caDNAno
journal, June 2009

  • Douglas, Shawn M.; Marblestone, Adam H.; Teerapittayanon, Surat
  • Nucleic Acids Research, Vol. 37, Issue 15
  • DOI: 10.1093/nar/gkp436

Six-Helix Bundles Designed from DNA
journal, April 2005

  • Mathieu, Frederick; Liao, Shiping; Kopatsch, Jens
  • Nano Letters, Vol. 5, Issue 4
  • DOI: 10.1021/nl050084f

Direct Mechanical Measurements Reveal the Material Properties of Three-Dimensional DNA Origami
journal, December 2011

  • Kauert, Dominik J.; Kurth, Thomas; Liedl, Tim
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203503s

Self-assembly of three-dimensional prestressed tensegrity structures from DNA
journal, June 2010

  • Liedl, Tim; Högberg, Björn; Tytell, Jessica
  • Nature Nanotechnology, Vol. 5, Issue 7
  • DOI: 10.1038/nnano.2010.107

Nanoscale Structure and Microscale Stiffness of DNA Nanotubes
journal, July 2013

  • Schiffels, Daniel; Liedl, Tim; Fygenson, Deborah K.
  • ACS Nano, Vol. 7, Issue 8
  • DOI: 10.1021/nn401362p

Cytoskeletal Bundle Mechanics
journal, April 2008


Mechanical design of DNA nanostructures
journal, January 2015

  • Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.
  • Nanoscale, Vol. 7, Issue 14
  • DOI: 10.1039/C4NR07153K

Addressing the Instability of DNA Nanostructures in Tissue Culture
journal, August 2014

  • Hahn, Jaeseung; Wickham, Shelley F. J.; Shih, William M.
  • ACS Nano, Vol. 8, Issue 9
  • DOI: 10.1021/nn503513p

Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation
journal, May 2017

  • Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15654

Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability
journal, April 2014

  • Perrault, Steven D.; Shih, William M.
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn5011914

Lattice engineering through nanoparticle–DNA frameworks
journal, February 2016

  • Tian, Ye; Zhang, Yugang; Wang, Tong
  • Nature Materials, Vol. 15, Issue 6, p. 654-661
  • DOI: 10.1038/nmat4571

Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames
journal, May 2015


Complex silica composite nanomaterials templated with DNA origami
journal, July 2018


Sequence-programmable covalent bonding of designed DNA assemblies
journal, August 2018

  • Gerling, Thomas; Kube, Massimo; Kick, Benjamin
  • Science Advances, Vol. 4, Issue 8
  • DOI: 10.1126/sciadv.aau1157

Probing Nucleosome Stability with a DNA Origami Nanocaliper
journal, July 2016


Uncovering the forces between nucleosomes using DNA origami
journal, November 2016

  • Funke, Jonas J.; Ketterer, Philip; Lieleg, Corinna
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600974

Spatial control of membrane receptor function using ligand nanocalipers
journal, July 2014

  • Shaw, Alan; Lundin, Vanessa; Petrova, Ekaterina
  • Nature Methods, Vol. 11, Issue 8
  • DOI: 10.1038/nmeth.3025

A finite element framework for computation of protein normal modes and mechanical response
journal, November 2007

  • Bathe, Mark
  • Proteins: Structure, Function, and Bioinformatics, Vol. 70, Issue 4
  • DOI: 10.1002/prot.21708

Two design strategies for enhancement of multilayer–DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning
journal, January 2012

  • Ke, Yonggang; Bellot, Gaëtan; Voigt, Niels V.
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20446k

Magnesium-free self-assembly of multi-layer DNA objects
journal, January 2012

  • Martin, Thomas G.; Dietz, Hendrik
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2095

Cryo-EM structure of a 3D DNA-origami object
journal, November 2012

  • Bai, X. -c.; Martin, T. G.; Scheres, S. H. W.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 49
  • DOI: 10.1073/pnas.1215713109

Structure and conformational dynamics of scaffolded DNA origami nanoparticles
journal, May 2017

  • Pan, Keyao; Bricker, William P.; Ratanalert, Sakul
  • Nucleic Acids Research, Vol. 45, Issue 11
  • DOI: 10.1093/nar/gkx378

Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds
journal, July 2018

  • Chen, Xiaoxing; Wang, Qian; Peng, Jin
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 29
  • DOI: 10.1021/acsami.8b09222

Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
journal, February 2017

  • Zheng, Shawn Q.; Palovcak, Eugene; Armache, Jean-Paul
  • Nature Methods, Vol. 14, Issue 4
  • DOI: 10.1038/nmeth.4193

EMAN2: An extensible image processing suite for electron microscopy
journal, January 2007

  • Tang, Guang; Peng, Liwei; Baldwin, Philip R.
  • Journal of Structural Biology, Vol. 157, Issue 1
  • DOI: 10.1016/j.jsb.2006.05.009

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium
journal, December 2011

  • Hart, Katarina; Foloppe, Nicolas; Baker, Christopher M.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 1
  • DOI: 10.1021/ct200723y

Magnesium Ion–Water Coordination and Exchange in Biomolecular Simulations
journal, March 2012

  • Allnér, Olof; Nilsson, Lennart; Villa, Alessandra
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 4
  • DOI: 10.1021/ct3000734

Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations
journal, September 2001

  • Batcho, Paul F.; Case, David A.; Schlick, Tamar
  • The Journal of Chemical Physics, Vol. 115, Issue 9
  • DOI: 10.1063/1.1389854

Constant pressure molecular dynamics simulation: The Langevin piston method
journal, September 1995

  • Feller, Scott E.; Zhang, Yuhong; Pastor, Richard W.
  • The Journal of Chemical Physics, Vol. 103, Issue 11
  • DOI: 10.1063/1.470648

Works referencing / citing this record:

The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes
text, January 2020

  • Mohammed, Abdulmelik; Jonoska, Nataša; Saito, Masahico
  • Schloss Dagstuhl - Leibniz-Zentrum für Informatik
  • DOI: 10.4230/lipics.dna.2020.1

ENSnano: A 3D Modeling Software for DNA Nanostructures
text, January 2021

  • Levy, Nicolas; Schabanel, Nicolas
  • Schloss Dagstuhl - Leibniz-Zentrum für Informatik
  • DOI: 10.4230/lipics.dna.27.5