DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of low-volatility organic compounds in initial particle growth in the atmosphere

Abstract

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absencemore » of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10-4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10-4.5 to 10-0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [1];  [6];  [1];  [7];  [5];  [4];  [8];  [9];  [10];  [5];  [5];  [3];  [11];  [11];  [4] more »;  [3];  [3];  [10];  [5];  [1];  [3];  [1];  [11];  [12];  [5];  [5];  [5];  [13];  [14];  [1];  [4];  [15];  [16];  [4];  [3];  [17];  [5];  [3];  [5];  [4];  [14];  [5];  [4];  [5];  [5];  [18];  [5];  [19];  [20];  [21];  [14];  [4];  [1];  [22];  [23];  [2];  [18];  [4];  [1];  [24];  [5];  [6];  [25];  [26];  [1] « less
  1. Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  2. Carnegie Mellon University, Pittsburgh, PA (United States)
  3. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  4. Goethe University, Frankfurt (Germany)
  5. University of Helsinki (Finland)
  6. Stockholm University (Sweden)
  7. Paul Scherrer Inst. (PSI), Villigen (Switzerland); University of Helsinki (Finland); Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland)
  8. Paul Scherrer Inst. (PSI), Villigen (Switzerland); University of Helsinki (Finland)
  9. Goethe University, Frankfurt (Germany); National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States)
  10. California Institute of Technology (CalTech), Pasadena, CA (United States)
  11. University Innsbruck (Austria); Ionicon Analytik GmbH, Innsbruck (Austria)
  12. Paul Scherrer Inst. (PSI), Villigen (Switzerland); WSL Institute for Snow and Avalanche Research, Davos (Switzerland)
  13. University of Helsinki (Finland); University of Eastern Finland, Kuopio (Finland)
  14. University of Eastern Finland, Kuopio (Finland)
  15. University of Eastern Finland, Kuopio (Finland); Finnish Meteorological Institute, Helsinki (Finland)
  16. University of Eastern Finland, Kuopio (Finland); National Center for Atmospheric Research (NCAR), Boulder, CO (United States)
  17. Karlsruhe Institute of Technology (KIT) (Germany)
  18. University of Leeds (United Kingdom)
  19. University of Eastern Finland, Kuopio (Finland); University of California, Irvine, CA (United States)
  20. University of Helsinki (Finland); University Innsbruck (Austria); University of Vienna (Austria)
  21. University of Lisbon (Portugal); University of Beira Interior, Lisbon (Portugal)
  22. Goethe University, Frankfurt (Germany); University of Helsinki (Finland)
  23. University of Vienna (Austria)
  24. European Organization for Nuclear Research (CERN), Geneva (Switzerland); Goethe University, Frankfurt (Germany)
  25. University of Helsinki (Finland); Aerodyne Research, Inc., Billerica, MA (United States)
  26. Carnegie Mellon University, Pittsburgh, PA (United States); University of Helsinki (Finland)
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF); Swiss National Science Foundation (SNSF); Academy of Finland; Horizon 2020; Swedish Research Council (SRC); Vetenskapsrådet; Portuguese Foundation for Science and Technology; Russian Academy of Sciences; Russian Foundation for Basic Research
OSTI Identifier:
1904770
Grant/Contract Number:  
SC0014469; AGS1136479; AGS1447056; AGS1439551; CHE1012293; 2011-5120; 08-02-91006-CERN; 12-02-91522-CERN
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 533; Journal Issue: 7604; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Tröstl, Jasmin, Chuang, Wayne K., Gordon, Hamish, Heinritzi, Martin, Yan, Chao, Molteni, Ugo, Ahlm, Lars, Frege, Carla, Bianchi, Federico, Wagner, Robert, Simon, Mario, Lehtipalo, Katrianne, Williamson, Christina, Craven, Jill S., Duplissy, Jonathan, Adamov, Alexey, Almeida, Joao, Bernhammer, Anne-Kathrin, Breitenlechner, Martin, Brilke, Sophia, Dias, Antònio, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Gysel, Martin, Hansel, Armin, Hoyle, Christopher R., Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Keskinen, Helmi, Kim, Jaeseok, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lawler, Michael, Leiminger, Markus, Mathot, Serge, Möhler, Ottmar, Nieminen, Tuomo, Onnela, Antti, Petäjä, Tuukka, Piel, Felix M., Miettinen, Pasi, Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Sengupta, Kamalika, Sipilä, Mikko, Smith, James N., Steiner, Gerhard, Tomè, Antònio, Virtanen, Annele, Wagner, Andrea C., Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M., Ye, Penglin, Carslaw, Kenneth S., Curtius, Joachim, Dommen, Josef, Kirkby, Jasper, Kulmala, Markku, Riipinen, Ilona, Worsnop, Douglas R., Donahue, Neil M., and Baltensperger, Urs. The role of low-volatility organic compounds in initial particle growth in the atmosphere. United States: N. p., 2016. Web. doi:10.1038/nature18271.
Tröstl, Jasmin, Chuang, Wayne K., Gordon, Hamish, Heinritzi, Martin, Yan, Chao, Molteni, Ugo, Ahlm, Lars, Frege, Carla, Bianchi, Federico, Wagner, Robert, Simon, Mario, Lehtipalo, Katrianne, Williamson, Christina, Craven, Jill S., Duplissy, Jonathan, Adamov, Alexey, Almeida, Joao, Bernhammer, Anne-Kathrin, Breitenlechner, Martin, Brilke, Sophia, Dias, Antònio, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Gysel, Martin, Hansel, Armin, Hoyle, Christopher R., Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Keskinen, Helmi, Kim, Jaeseok, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lawler, Michael, Leiminger, Markus, Mathot, Serge, Möhler, Ottmar, Nieminen, Tuomo, Onnela, Antti, Petäjä, Tuukka, Piel, Felix M., Miettinen, Pasi, Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Sengupta, Kamalika, Sipilä, Mikko, Smith, James N., Steiner, Gerhard, Tomè, Antònio, Virtanen, Annele, Wagner, Andrea C., Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M., Ye, Penglin, Carslaw, Kenneth S., Curtius, Joachim, Dommen, Josef, Kirkby, Jasper, Kulmala, Markku, Riipinen, Ilona, Worsnop, Douglas R., Donahue, Neil M., & Baltensperger, Urs. The role of low-volatility organic compounds in initial particle growth in the atmosphere. United States. https://doi.org/10.1038/nature18271
Tröstl, Jasmin, Chuang, Wayne K., Gordon, Hamish, Heinritzi, Martin, Yan, Chao, Molteni, Ugo, Ahlm, Lars, Frege, Carla, Bianchi, Federico, Wagner, Robert, Simon, Mario, Lehtipalo, Katrianne, Williamson, Christina, Craven, Jill S., Duplissy, Jonathan, Adamov, Alexey, Almeida, Joao, Bernhammer, Anne-Kathrin, Breitenlechner, Martin, Brilke, Sophia, Dias, Antònio, Ehrhart, Sebastian, Flagan, Richard C., Franchin, Alessandro, Fuchs, Claudia, Guida, Roberto, Gysel, Martin, Hansel, Armin, Hoyle, Christopher R., Jokinen, Tuija, Junninen, Heikki, Kangasluoma, Juha, Keskinen, Helmi, Kim, Jaeseok, Krapf, Manuel, Kürten, Andreas, Laaksonen, Ari, Lawler, Michael, Leiminger, Markus, Mathot, Serge, Möhler, Ottmar, Nieminen, Tuomo, Onnela, Antti, Petäjä, Tuukka, Piel, Felix M., Miettinen, Pasi, Rissanen, Matti P., Rondo, Linda, Sarnela, Nina, Schobesberger, Siegfried, Sengupta, Kamalika, Sipilä, Mikko, Smith, James N., Steiner, Gerhard, Tomè, Antònio, Virtanen, Annele, Wagner, Andrea C., Weingartner, Ernest, Wimmer, Daniela, Winkler, Paul M., Ye, Penglin, Carslaw, Kenneth S., Curtius, Joachim, Dommen, Josef, Kirkby, Jasper, Kulmala, Markku, Riipinen, Ilona, Worsnop, Douglas R., Donahue, Neil M., and Baltensperger, Urs. Wed . "The role of low-volatility organic compounds in initial particle growth in the atmosphere". United States. https://doi.org/10.1038/nature18271. https://www.osti.gov/servlets/purl/1904770.
@article{osti_1904770,
title = {The role of low-volatility organic compounds in initial particle growth in the atmosphere},
author = {Tröstl, Jasmin and Chuang, Wayne K. and Gordon, Hamish and Heinritzi, Martin and Yan, Chao and Molteni, Ugo and Ahlm, Lars and Frege, Carla and Bianchi, Federico and Wagner, Robert and Simon, Mario and Lehtipalo, Katrianne and Williamson, Christina and Craven, Jill S. and Duplissy, Jonathan and Adamov, Alexey and Almeida, Joao and Bernhammer, Anne-Kathrin and Breitenlechner, Martin and Brilke, Sophia and Dias, Antònio and Ehrhart, Sebastian and Flagan, Richard C. and Franchin, Alessandro and Fuchs, Claudia and Guida, Roberto and Gysel, Martin and Hansel, Armin and Hoyle, Christopher R. and Jokinen, Tuija and Junninen, Heikki and Kangasluoma, Juha and Keskinen, Helmi and Kim, Jaeseok and Krapf, Manuel and Kürten, Andreas and Laaksonen, Ari and Lawler, Michael and Leiminger, Markus and Mathot, Serge and Möhler, Ottmar and Nieminen, Tuomo and Onnela, Antti and Petäjä, Tuukka and Piel, Felix M. and Miettinen, Pasi and Rissanen, Matti P. and Rondo, Linda and Sarnela, Nina and Schobesberger, Siegfried and Sengupta, Kamalika and Sipilä, Mikko and Smith, James N. and Steiner, Gerhard and Tomè, Antònio and Virtanen, Annele and Wagner, Andrea C. and Weingartner, Ernest and Wimmer, Daniela and Winkler, Paul M. and Ye, Penglin and Carslaw, Kenneth S. and Curtius, Joachim and Dommen, Josef and Kirkby, Jasper and Kulmala, Markku and Riipinen, Ilona and Worsnop, Douglas R. and Donahue, Neil M. and Baltensperger, Urs},
abstractNote = {About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10-4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10-4.5 to 10-0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.},
doi = {10.1038/nature18271},
journal = {Nature (London)},
number = 7604,
volume = 533,
place = {United States},
year = {Wed May 25 00:00:00 EDT 2016},
month = {Wed May 25 00:00:00 EDT 2016}
}

Works referenced in this record:

Oligomer formation within secondary organic aerosols: equilibrium and dynamic considerations
journal, January 2014


Impact of nucleation on global CCN
journal, January 2009

  • Merikanto, J.; Spracklen, D. V.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 21
  • DOI: 10.5194/acp-9-8601-2009

The role of VOC oxidation products in continental new particle formation
journal, January 2008

  • Laaksonen, A.; Kulmala, M.; O'Dowd, C. D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 10
  • DOI: 10.5194/acp-8-2657-2008

Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in α-Pinene Ozonolysis Products
journal, November 2015

  • Kurtén, Theo; Rissanen, Matti P.; Mackeprang, Kasper
  • The Journal of Physical Chemistry A, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpca.5b08948

SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds
journal, January 2008


Atmospheric nanoparticles formed from heterogeneous reactions of organics
journal, February 2010

  • Wang, Lin; Khalizov, Alexei F.; Zheng, Jun
  • Nature Geoscience, Vol. 3, Issue 4
  • DOI: 10.1038/ngeo778

Parameterizations for sulfuric acid/water nucleation rates
journal, April 1998

  • Kulmala, Markka; Laaksonen, Ari; Pirjola, Liisa
  • Journal of Geophysical Research: Atmospheres, Vol. 103, Issue D7
  • DOI: 10.1029/97JD03718

Dependence of particle nucleation and growth on high-molecular-weight gas-phase products during ozonolysis of α-pinene
journal, January 2013


Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
journal, January 2011

  • Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3865-2011

Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed
journal, January 2010

  • Nieminen, T.; Lehtinen, K. E. J.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 20
  • DOI: 10.5194/acp-10-9773-2010

How do organic vapors contribute to new-particle formation?
journal, January 2013

  • Donahue, Neil M.; Ortega, Ismael K.; Chuang, Wayne
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00046j

New particle formation in the free troposphere: A question of chemistry and timing
journal, May 2016


Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO 2 Radicals and Their Reactions with NO, NO 2 , SO 2 , and Other RO 2 Radicals
journal, October 2015

  • Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf
  • The Journal of Physical Chemistry A, Vol. 119, Issue 41
  • DOI: 10.1021/acs.jpca.5b07295

Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber
journal, January 2012

  • Voigtländer, J.; Duplissy, J.; Rondo, L.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-2205-2012

Ozonolysis of α-pinene and β-pinene: Kinetics and mechanism
journal, March 2005

  • Zhang, Dan; Zhang, Renyi
  • The Journal of Chemical Physics, Vol. 122, Issue 11
  • DOI: 10.1063/1.1862616

The contribution of organics to atmospheric nanoparticle growth
journal, June 2012

  • Riipinen, Ilona; Yli-Juuti, Taina; Pierce, Jeffrey R.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1499

Particle Size Magnifier for Nano-CN Detection
journal, March 2011


Initial steps of aerosol growth
journal, January 2004

  • Kulmala, M.; Laakso, L.; Lehtinen, K. E. J.
  • Atmospheric Chemistry and Physics, Vol. 4, Issue 11/12
  • DOI: 10.5194/acp-4-2553-2004

Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei
journal, January 2012


A global model of natural volatile organic compound emissions
journal, January 1995

  • Guenther, Alex; Hewitt, C. Nicholas; Erickson, David
  • Journal of Geophysical Research, Vol. 100, Issue D5
  • DOI: 10.1029/94JD02950

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
journal, May 2014


Understanding global secondary organic aerosol amount and size-resolved condensational behavior
journal, January 2013

  • D'Andrea, S. D.; Häkkinen, S. A. K.; Westervelt, D. M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11519-2013

Results from the CERN pilot CLOUD experiment
journal, January 2010

  • Duplissy, J.; Enghoff, M. B.; Aplin, K. L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 4
  • DOI: 10.5194/acp-10-1635-2010

Rapid Autoxidation Forms Highly Oxidized RO 2 Radicals in the Atmosphere
journal, October 2014

  • Jokinen, Tuija; Sipilä, Mikko; Richters, Stefanie
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408566

New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments
journal, April 2006

  • Chipperfield, M. P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 132, Issue 617
  • DOI: 10.1256/qj.05.51

Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments
journal, January 2013

  • Häkkinen, S. A. K.; Manninen, H. E.; Yli-Juuti, T.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 15
  • DOI: 10.5194/acp-13-7665-2013

Organic aerosol formation via sulphate cluster activation: ORGANIC AEROSOL FORMATION
journal, February 2004

  • Kulmala, Markku; Kerminen, Veli-Matti; Anttila, Tatu
  • Journal of Geophysical Research: Atmospheres, Vol. 109, Issue D4
  • DOI: 10.1029/2003JD003961

Investigation of α-Pinene + Ozone Secondary Organic Aerosol Formation at Low Total Aerosol Mass
journal, June 2006

  • Presto, Albert A.; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 40, Issue 11
  • DOI: 10.1021/es052203z

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
journal, August 2011

  • Kirkby, Jasper; Curtius, Joachim; Almeida, João
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10343

Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
journal, October 2013

  • Schobesberger, S.; Junninen, H.; Bianchi, F.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 43
  • DOI: 10.1073/pnas.1306973110

Performance of diethylene glycol-based particle counters in the sub-3 nm size range
journal, January 2013

  • Wimmer, D.; Lehtipalo, K.; Franchin, A.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 7
  • DOI: 10.5194/amt-6-1793-2013

Direct Observations of Atmospheric Aerosol Nucleation
journal, February 2013


A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution
journal, January 2012

  • Donahue, N. M.; Kroll, J. H.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-615-2012

Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory: BINARY PARTICLE FORMATION EXPERIMENTS
journal, February 2016

  • Duplissy, J.; Merikanto, J.; Franchin, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 4
  • DOI: 10.1002/2015JD023539

Bubble distributions and dynamics: The expansion-coalescence equation: EXPANSION-COALESCENCE OF BUBBLES
journal, November 2004

  • Lovejoy, S.; Gaonac'h, H.; Schertzer, D.
  • Journal of Geophysical Research: Solid Earth, Vol. 109, Issue B11
  • DOI: 10.1029/2003JB002823

An absorption model of gas/particle partitioning of organic compounds in the atmosphere
journal, January 1994


Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
journal, January 2012

  • Riccobono, F.; Rondo, L.; Sipilä, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9427-2012

High-Dispersed Aerosols
book, January 1971


Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model
journal, January 2010

  • Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.
  • Geoscientific Model Development, Vol. 3, Issue 2
  • DOI: 10.5194/gmd-3-519-2010

Characterization of the mass-dependent transmission efficiency of a CIMS
journal, January 2016

  • Heinritzi, Martin; Simon, Mario; Steiner, Gerhard
  • Atmospheric Measurement Techniques, Vol. 9, Issue 4
  • DOI: 10.5194/amt-9-1449-2016

A high-resolution mass spectrometer to measure atmospheric ion composition
journal, January 2010

  • Junninen, H.; Ehn, M.; Petäjä, T.
  • Atmospheric Measurement Techniques, Vol. 3, Issue 4
  • DOI: 10.5194/amt-3-1039-2010

Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification
journal, March 2011


Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry
journal, January 2011

  • Kürten, A.; Rondo, L.; Ehrhart, S.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 3
  • DOI: 10.5194/amt-4-437-2011

Density and surface tension of 83 organic liquids
journal, July 1981

  • Korosi, Gabor; Kovats, E. S.
  • Journal of Chemical & Engineering Data, Vol. 26, Issue 3
  • DOI: 10.1021/je00025a032

Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation
journal, September 2007


Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization
journal, May 2015

  • Hyttinen, Noora; Kupiainen-Määttä, Oona; Rissanen, Matti P.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 24
  • DOI: 10.1021/acs.jpca.5b01818

On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber
journal, January 2012

  • Bianchi, F.; Dommen, J.; Mathot, S.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 7
  • DOI: 10.5194/amt-5-1719-2012

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Radial Differential Mobility Analyzer for One Nanometer Particle Classification
journal, January 2009

  • Brunelli, N. A.; Flagan, R. C.; Giapis, K. P.
  • Aerosol Science and Technology, Vol. 43, Issue 1
  • DOI: 10.1080/02786820802464302

Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events
journal, January 2011

  • Pierce, J. R.; Riipinen, I.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-9019-2011

Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles: ORGANIC CONDENSATION
journal, August 2011

  • Donahue, N. M.; Trump, E. R.; Pierce, J. R.
  • Geophysical Research Letters, Vol. 38, Issue 16
  • DOI: 10.1029/2011GL048115

Characterisation of organic contaminants in the CLOUD chamber at CERN
journal, January 2014

  • Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 7
  • DOI: 10.5194/amt-7-2159-2014

Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter
journal, January 2009

  • Iida, Kenjiro; Stolzenburg, Mark R.; McMurry, Peter H.
  • Aerosol Science and Technology, Vol. 43, Issue 1
  • DOI: 10.1080/02786820802488194

Results of the first air ion spectrometer calibration and intercomparison workshop
journal, January 2009

  • Asmi, E.; Sipilä, M.; Manninen, H. E.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 1
  • DOI: 10.5194/acp-9-141-2009

A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects
journal, August 2011


Intercomparison of air ion spectrometers: an evaluation of results in varying conditions
journal, May 2011

  • Gagné, S.; Lehtipalo, K.; Manninen, H. E.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 5
  • DOI: 10.5194/amt-4-805-2011

Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements
journal, June 2002

  • Wang, Jian; McNeill, V. Faye; Collins, Don R.
  • Aerosol Science and Technology, Vol. 36, Issue 6
  • DOI: 10.1080/02786820290038366

The formation of SO5by gas phase ion–molecule reactions
journal, December 1992

  • Möhler, O.; Reiner, T.; Arnold, F.
  • The Journal of Chemical Physics, Vol. 97, Issue 11
  • DOI: 10.1063/1.463394

The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene
journal, October 2014

  • Rissanen, Matti P.; Kurtén, Theo; Sipilä, Mikko
  • Journal of the American Chemical Society, Vol. 136, Issue 44
  • DOI: 10.1021/ja507146s

Ion-induced nucleation of pure biogenic particles
journal, May 2016

  • Kirkby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17953

Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle size, season, data analysis method and ambient conditions
journal, January 2011

  • Yli-Juuti, T.; Nieminen, T.; Hirsikko, A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 24
  • DOI: 10.5194/acp-11-12865-2011

Scanning Electrical Mobility Spectrometer
journal, January 1990


Aerosol Measurement: Principles, Techniques, and Applications
book, June 2011


High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time
journal, June 2010

  • Graus, Martin; Müller, Markus; Hansel, Armin
  • Journal of the American Society for Mass Spectrometry, Vol. 21, Issue 6
  • DOI: 10.1016/j.jasms.2010.02.006

Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid
journal, February 2012

  • Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp212123n

Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF
journal, January 2012

  • Jokinen, T.; Sipilä, M.; Junninen, H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4117-2012

Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
journal, May 2015

  • Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 23
  • DOI: 10.1073/pnas.1423977112

Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization
journal, May 2015

  • Hyttinen, Noora; Kupiainen-Määttä, Oona; Rissanen, Matti P.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 24
  • DOI: 10.1021/acs.jpca.5b01818

Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid
journal, February 2012

  • Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp212123n

Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
journal, January 2012

  • Riccobono, F.; Rondo, L.; Sipilä, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9427-2012

SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds
journal, January 2007


Works referencing / citing this record:

Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
journal, January 2019


NO 2 Suppression of Autoxidation–Inhibition of Gas-Phase Highly Oxidized Dimer Product Formation
journal, September 2018


Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere
journal, July 2018


Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change
journal, January 2019


The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system
journal, September 2019


Molecular identification of organic vapors driving atmospheric nanoparticle growth
journal, September 2019


Secondary organic aerosol reduced by mixture of atmospheric vapours
journal, January 2019


Terpene Composition Complexity Controls Secondary Organic Aerosol Yields from Scots Pine Volatile Emissions
journal, February 2018


Solar eclipse demonstrating the importance of photochemistry in new particle formation
journal, April 2017

  • Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep45707

Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
journal, October 2016

  • Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1602360113

Observations of biogenic ion-induced cluster formation in the atmosphere
journal, April 2018


On the fate of oxygenated organic molecules in atmospheric aerosol particles
journal, March 2020

  • Pospisilova, V.; Lopez-Hilfiker, F. D.; Bell, D. M.
  • Science Advances, Vol. 6, Issue 11
  • DOI: 10.1126/sciadv.aax8922

Growth of nucleation mode particles in the summertime Arctic: a case study
journal, January 2016

  • Willis, Megan D.; Burkart, Julia; Thomas, Jennie L.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 12
  • DOI: 10.5194/acp-16-7663-2016

An efficient approach for treating composition-dependent diffusion within organic particles
journal, September 2017

  • O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 17
  • DOI: 10.5194/acp-17-10477-2017

Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol
journal, January 2017

  • Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-2103-2017

Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities
journal, January 2017

  • Kontkanen, Jenni; Lehtipalo, Katrianne; Ahonen, Lauri
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-2163-2017

Simultaneous measurements of new particle formation at 1 s time resolution at a street site and a rooftop site
journal, August 2017

  • Zhu, Yujiao; Yan, Caiqing; Zhang, Renyi
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 15
  • DOI: 10.5194/acp-17-9469-2017

Resolving nanoparticle growth mechanisms from size- and time-dependent growth rate analysis
journal, January 2018

  • Pichelstorfer, Lukas; Stolzenburg, Dominik; Ortega, John
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-1307-2018

Vertical and horizontal distribution of regional new particle formation events in Madrid
journal, January 2018

  • Carnerero, Cristina; Pérez, Noemí; Reche, Cristina
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 22
  • DOI: 10.5194/acp-18-16601-2018

Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy
journal, January 2018

  • Zha, Qiaozhi; Yan, Chao; Junninen, Heikki
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 23
  • DOI: 10.5194/acp-18-17437-2018

Nanoparticle growth by particle-phase chemistry
journal, January 2018

  • Apsokardu, Michael J.; Johnston, Murray V.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 3
  • DOI: 10.5194/acp-18-1895-2018

Observations of ozone depletion events in a Finnish boreal forest
journal, January 2018

  • Chen, Xuemeng; Quéléver, Lauriane L. J.; Fung, Pak L.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 1
  • DOI: 10.5194/acp-18-49-2018

Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
journal, January 2018

  • Frege, Carla; Ortega, Ismael K.; Rissanen, Matti P.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 1
  • DOI: 10.5194/acp-18-65-2018

New particle formation, growth and apparent shrinkage at a rural background site in western Saudi Arabia
journal, January 2019

  • Hakala, Simo; Alghamdi, Mansour A.; Paasonen, Pauli
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 16
  • DOI: 10.5194/acp-19-10537-2019

Technical note: Effects of uncertainties and number of data points on line fitting – a case study on new particle formation
journal, January 2019

  • Mikkonen, Santtu; Pitkänen, Mikko R. A.; Nieminen, Tuomo
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
  • DOI: 10.5194/acp-19-12531-2019

Regional sources of airborne ultrafine particle number and mass concentrations in California
journal, December 2019

  • Yu, Xin; Venecek, Melissa; Kumar, Anikender
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 23
  • DOI: 10.5194/acp-19-14677-2019

Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing
journal, January 2019

  • Brean, James; Harrison, Roy M.; Shi, Zongbo
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 23
  • DOI: 10.5194/acp-19-14933-2019

Dynamic and timing properties of new aerosol particle formation and consecutive growth events
journal, January 2019


Effect of temperature on the formation of highly oxygenated organic molecules (HOMs) from alpha-pinene ozonolysis
journal, January 2019

  • Quéléver, Lauriane L. J.; Kristensen, Kasper; Normann Jensen, Louise
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 11
  • DOI: 10.5194/acp-19-7609-2019

Interaction between succinic acid and sulfuric acid–base clusters
journal, January 2019


Molecular understanding of the suppression of new-particle formation by isoprene
journal, January 2020

  • Heinritzi, Martin; Dada, Lubna; Simon, Mario
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 20
  • DOI: 10.5194/acp-20-11809-2020

New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula
journal, November 2020

  • Casquero-Vera, Juan Andrés; Lyamani, Hassan; Dada, Lubna
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 22
  • DOI: 10.5194/acp-20-14253-2020

Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene
journal, April 2020

  • Wang, Yonghong; Riva, Matthieu; Xie, Hongbin
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 8
  • DOI: 10.5194/acp-20-5145-2020

Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics
journal, January 2020

  • Garmash, Olga; Rissanen, Matti P.; Pullinen, Iida
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 1
  • DOI: 10.5194/acp-20-515-2020

Effects of black carbon mitigation on Arctic climate
journal, May 2020

  • Kühn, Thomas; Kupiainen, Kaarle; Miinalainen, Tuuli
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 9
  • DOI: 10.5194/acp-20-5527-2020

Insights into atmospheric oxidation processes by performing factor analyses on subranges of mass spectra
journal, May 2020

  • Zhang, Yanjun; Peräkylä, Otso; Yan, Chao
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 10
  • DOI: 10.5194/acp-20-5945-2020

Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs)
journal, January 2020

  • Peräkylä, Otso; Riva, Matthieu; Heikkinen, Liine
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 2
  • DOI: 10.5194/acp-20-649-2020

Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen
journal, October 2017

  • Weller, Rolf; Legrand, Michel; Preunkert, Susanne
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-590

Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition
journal, October 2021

  • Wu, Cheng; Bell, David M.; Graham, Emelie L.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 19
  • DOI: 10.5194/acp-21-14907-2021

A global model perturbed parameter ensemble study of secondary organic aerosol formation
journal, February 2021

  • Sengupta, Kamalika; Pringle, Kirsty; Johnson, Jill S.
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 4
  • DOI: 10.5194/acp-21-2693-2021

Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth
journal, February 2021

  • Salma, Imre; Thén, Wanda; Aalto, Pasi
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 4
  • DOI: 10.5194/acp-21-2861-2021

Production of highly oxygenated organic molecules (HOMs) from trace contaminants during isoprene oxidation
journal, January 2018

  • Bernhammer, Anne-Kathrin; Fischer, Lukas; Mentler, Bernhard
  • Atmospheric Measurement Techniques, Vol. 11, Issue 8
  • DOI: 10.5194/amt-11-4763-2018

A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application
journal, January 2019

  • Bannan, Thomas J.; Le Breton, Michael; Priestley, Michael
  • Atmospheric Measurement Techniques, Vol. 12, Issue 3
  • DOI: 10.5194/amt-12-1429-2019

Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species
journal, January 2019

  • Riva, Matthieu; Rantala, Pekka; Krechmer, Jordan E.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 4
  • DOI: 10.5194/amt-12-2403-2019

Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation
journal, January 2018

  • Kaiser, J. Christopher; Hendricks, Johannes; Righi, Mattia
  • Geoscientific Model Development Discussions
  • DOI: 10.5194/gmd-2018-185