DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings

Abstract

Atmospheric marine aerosol particles impact Earth's albedo and climate. These particles can be primary or secondary and come from a variety of sources, including sea salt, dissolved organic matter, volatile organic compounds, and sulfur-containing compounds. Dimethylsulfide (DMS) marine emissions contribute greatly to the global biogenic sulfur budget, and its oxidation products can contribute to aerosol mass, specifically as sulfuric acid and methanesulfonic acid (MSA). Further, sulfuric acid is a known nucleating compound, and MSA may be able to participate in nucleation when bases are available. As DMS emissions, and thus MSA and sulfuric acid from DMS oxidation, may have changed since pre-industrial times and may change in a warming climate, it is important to characterize and constrain the climate impacts of both species. Currently, global models that simulate aerosol size distributions include contributions of sulfate and sulfuric acid from DMS oxidation, but to our knowledge, global models typically neglect the impact of MSA on size distributions. In this study, we use the GEOS-Chem-TOMAS (GC-TOMAS) global aerosol microphysics model to determine the impact on aerosol size distributions and subsequent aerosol radiative effects from including MSA in the size-resolved portion of the model. The effective equilibrium vapor pressure of MSA is currentlymore » uncertain, and we use the Extended Aerosol Inorganics Model (E-AIM) to build a parameterization for GC-TOMAS of MSA's effective volatility as a function of temperature, relative humidity, and available gas-phase bases, allowing MSA to condense as an ideally nonvolatile or semivolatile species or too volatile to condense. We also present two limiting cases for MSA's volatility, assuming that MSA is always ideally nonvolatile (irreversible condensation) or that MSA is always ideally semivolatile (quasi-equilibrium condensation but still irreversible condensation). We further present simulations in which MSA participates in binary and ternary nucleation with the same efficacy as sulfuric acid whenever MSA is treated as ideally nonvolatile. When using the volatility parameterization described above (both with and without nucleation), including MSA in the model changes the global annual averages at 900 hPa of submicron aerosol mass by 1.2 %, N3 (number concentration of particles greater than 3 nm in diameter) by -3.9 % (non-nucleating) or 112.5 % (nucleating), N80 by 0.8 % (non-nucleating) or 2.1 % (nucleating), the cloud-albedo aerosol indirect effect (AIE) by -8.6 mW m-2 (non-nucleating) or -26 mW m-2 (nucleating), and the direct radiative effect (DRE) by -15 mW m-2 (non-nucleating) or -14 mW m-2 (nucleating). The sulfate and sulfuric acid from DMS oxidation produces 4–6 times more submicron mass than MSA does, leading to an ~10 times stronger cooling effect in the DRE. But the changes in N80 are comparable between the contributions from MSA and from DMS-derived sulfate/sulfuric acid, leading to comparable changes in the cloud-albedo AIE. Model–measurement comparisons with the Heintzenberg et al. (2000) dataset over the Southern Ocean indicate that the default model has a missing source or sources of ultrafine particles: the cases in which MSA participates in nucleation (thus increasing ultrafine number) most closely match the Heintzenberg distributions, but we cannot conclude nucleation from MSA is the correct reason for improvement. Model–measurement comparisons with particle-phase MSA observed with a customized Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) from the ATom campaign show that cases with the MSA volatility parameterizations (both with and without nucleation) tend to fit the measurements the best (as this is the first use of MSA measurements from ATom, we provide a detailed description of these measurements and their calibration). However, no one model sensitivity case shows the best model–measurement agreement for both Heintzenberg and the ATom campaigns. As there are uncertainties in both MSA's behavior (nucleation and condensation) and the DMS emissions inventory, further studies on both fronts are needed to better constrain MSA's past, current, and future impacts upon the global aerosol size distribution and radiative forcing.« less

Authors:
ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Colorado State Univ., Fort Collins, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Aeronautics and Space Administration (NASA); National Oceanic and Atmospheric Administration (NOAA); Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1499057
Alternate Identifier(s):
OSTI ID: 1611664
Grant/Contract Number:  
SC0011780
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 19 Journal Issue: 5; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences

Citation Formats

Hodshire, Anna L., Campuzano-Jost, Pedro, Kodros, John K., Croft, Betty, Nault, Benjamin A., Schroder, Jason C., Jimenez, Jose L., and Pierce, Jeffrey R. The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Germany: N. p., 2019. Web. doi:10.5194/acp-19-3137-2019.
Hodshire, Anna L., Campuzano-Jost, Pedro, Kodros, John K., Croft, Betty, Nault, Benjamin A., Schroder, Jason C., Jimenez, Jose L., & Pierce, Jeffrey R. The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Germany. https://doi.org/10.5194/acp-19-3137-2019
Hodshire, Anna L., Campuzano-Jost, Pedro, Kodros, John K., Croft, Betty, Nault, Benjamin A., Schroder, Jason C., Jimenez, Jose L., and Pierce, Jeffrey R. Tue . "The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings". Germany. https://doi.org/10.5194/acp-19-3137-2019.
@article{osti_1499057,
title = {The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings},
author = {Hodshire, Anna L. and Campuzano-Jost, Pedro and Kodros, John K. and Croft, Betty and Nault, Benjamin A. and Schroder, Jason C. and Jimenez, Jose L. and Pierce, Jeffrey R.},
abstractNote = {Atmospheric marine aerosol particles impact Earth's albedo and climate. These particles can be primary or secondary and come from a variety of sources, including sea salt, dissolved organic matter, volatile organic compounds, and sulfur-containing compounds. Dimethylsulfide (DMS) marine emissions contribute greatly to the global biogenic sulfur budget, and its oxidation products can contribute to aerosol mass, specifically as sulfuric acid and methanesulfonic acid (MSA). Further, sulfuric acid is a known nucleating compound, and MSA may be able to participate in nucleation when bases are available. As DMS emissions, and thus MSA and sulfuric acid from DMS oxidation, may have changed since pre-industrial times and may change in a warming climate, it is important to characterize and constrain the climate impacts of both species. Currently, global models that simulate aerosol size distributions include contributions of sulfate and sulfuric acid from DMS oxidation, but to our knowledge, global models typically neglect the impact of MSA on size distributions. In this study, we use the GEOS-Chem-TOMAS (GC-TOMAS) global aerosol microphysics model to determine the impact on aerosol size distributions and subsequent aerosol radiative effects from including MSA in the size-resolved portion of the model. The effective equilibrium vapor pressure of MSA is currently uncertain, and we use the Extended Aerosol Inorganics Model (E-AIM) to build a parameterization for GC-TOMAS of MSA's effective volatility as a function of temperature, relative humidity, and available gas-phase bases, allowing MSA to condense as an ideally nonvolatile or semivolatile species or too volatile to condense. We also present two limiting cases for MSA's volatility, assuming that MSA is always ideally nonvolatile (irreversible condensation) or that MSA is always ideally semivolatile (quasi-equilibrium condensation but still irreversible condensation). We further present simulations in which MSA participates in binary and ternary nucleation with the same efficacy as sulfuric acid whenever MSA is treated as ideally nonvolatile. When using the volatility parameterization described above (both with and without nucleation), including MSA in the model changes the global annual averages at 900 hPa of submicron aerosol mass by 1.2 %, N3 (number concentration of particles greater than 3 nm in diameter) by -3.9 % (non-nucleating) or 112.5 % (nucleating), N80 by 0.8 % (non-nucleating) or 2.1 % (nucleating), the cloud-albedo aerosol indirect effect (AIE) by -8.6 mW m-2 (non-nucleating) or -26 mW m-2 (nucleating), and the direct radiative effect (DRE) by -15 mW m-2 (non-nucleating) or -14 mW m-2 (nucleating). The sulfate and sulfuric acid from DMS oxidation produces 4–6 times more submicron mass than MSA does, leading to an ~10 times stronger cooling effect in the DRE. But the changes in N80 are comparable between the contributions from MSA and from DMS-derived sulfate/sulfuric acid, leading to comparable changes in the cloud-albedo AIE. Model–measurement comparisons with the Heintzenberg et al. (2000) dataset over the Southern Ocean indicate that the default model has a missing source or sources of ultrafine particles: the cases in which MSA participates in nucleation (thus increasing ultrafine number) most closely match the Heintzenberg distributions, but we cannot conclude nucleation from MSA is the correct reason for improvement. Model–measurement comparisons with particle-phase MSA observed with a customized Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) from the ATom campaign show that cases with the MSA volatility parameterizations (both with and without nucleation) tend to fit the measurements the best (as this is the first use of MSA measurements from ATom, we provide a detailed description of these measurements and their calibration). However, no one model sensitivity case shows the best model–measurement agreement for both Heintzenberg and the ATom campaigns. As there are uncertainties in both MSA's behavior (nucleation and condensation) and the DMS emissions inventory, further studies on both fronts are needed to better constrain MSA's past, current, and future impacts upon the global aerosol size distribution and radiative forcing.},
doi = {10.5194/acp-19-3137-2019},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 5,
volume = 19,
place = {Germany},
year = {Tue Mar 12 00:00:00 EDT 2019},
month = {Tue Mar 12 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-19-3137-2019

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Biogenically driven organic contribution to marine aerosol
journal, October 2004

  • O'Dowd, Colin D.; Facchini, Maria Cristina; Cavalli, Fabrizia
  • Nature, Vol. 431, Issue 7009
  • DOI: 10.1038/nature02959

Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption: Ann. dist. & sources of Arctic aerosol
journal, April 2014

  • Breider, Thomas J.; Mickley, Loretta J.; Jacob, Daniel J.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 7
  • DOI: 10.1002/2013JD020996

Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect
journal, November 2016

  • Croft, B.; Wentworth, G. R.; Martin, R. V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13444

Production flux of sea spray aerosol
journal, January 2011

  • de Leeuw, Gerrit; Andreas, Edgar L.; Anguelova, Magdalena D.
  • Reviews of Geophysics, Vol. 49, Issue 2
  • DOI: 10.1029/2010RG000349

Observation of DMSO and CH3S(O)OH from the gas phase reaction between DMS and OH
journal, July 1996

  • S�rensen, S.; Falbe-Hansen, H.; Mangoni, M.
  • Journal of Atmospheric Chemistry, Vol. 24, Issue 3
  • DOI: 10.1007/BF00210288

A naming convention for atmospheric organic aerosol
journal, January 2014

  • Murphy, B. N.; Donahue, N. M.; Robinson, A. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5825-2014

A global three-dimensional model of tropospheric sulfate
journal, August 1996

  • Chin, Mian; Jacob, Daniel J.; Gardner, Geraldine M.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D13
  • DOI: 10.1029/96JD01221

Understanding global secondary organic aerosol amount and size-resolved condensational behavior
journal, January 2013

  • D'Andrea, S. D.; Häkkinen, S. A. K.; Westervelt, D. M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 22
  • DOI: 10.5194/acp-13-11519-2013

A global high-resolution emission inventory for ammonia
journal, December 1997

  • Bouwman, A. F.; Lee, D. S.; Asman, W. A. H.
  • Global Biogeochemical Cycles, Vol. 11, Issue 4
  • DOI: 10.1029/97GB02266

Causes and importance of new particle formation in the present-day and preindustrial atmospheres: CAUSES AND ROLE OF NEW PARTICLE FORMATION
journal, August 2017

  • Gordon, Hamish; Kirkby, Jasper; Baltensperger, Urs
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 16
  • DOI: 10.1002/2017JD026844

Parameterization for Atmospheric New-Particle Formation: Application to a System Involving Sulfuric Acid and Condensable Water-Soluble Organic Vapors
journal, October 2004

  • Kerminen, Veli-Matti; Anttila, Tatu; Lehtinen, Kari
  • Aerosol Science and Technology, Vol. 38, Issue 10
  • DOI: 10.1080/027868290519085

Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect
journal, January 2018

  • Kodros, John K.; Hanna, Sarah J.; Bertram, Allan K.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 15
  • DOI: 10.5194/acp-18-11345-2018

Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide
journal, January 2010

  • Woodhouse, M. T.; Carslaw, K. S.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 16
  • DOI: 10.5194/acp-10-7545-2010

Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations
journal, January 2012

  • McGrath, M. J.; Olenius, T.; Ortega, I. K.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 5
  • DOI: 10.5194/acp-12-2345-2012

Evolution of Asian aerosols during transpacific transport in INTEX-B
journal, January 2009

  • Dunlea, E. J.; DeCarlo, P. F.; Aiken, A. C.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 19
  • DOI: 10.5194/acp-9-7257-2009

Global cloud condensation nuclei influenced by carbonaceous combustion aerosol
journal, January 2011

  • Spracklen, D. V.; Carslaw, K. S.; Pöschl, U.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-9067-2011

A microphysics-based investigation of the radiative effects of aerosol-cloud interactions for two MAST Experiment case studies
journal, January 2001

  • Erlick, Carynelisa; Russell, Lynn M.; Ramaswamy, V.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D1
  • DOI: 10.1029/2000JD900567

Contrasting the direct radiative effect and direct radiative forcing of aerosols
journal, January 2014

  • Heald, C. L.; Ridley, D. A.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5513-2014

Free energy barrier in the growth of sulfuric acid–ammonia and sulfuric acid–dimethylamine clusters
journal, August 2013

  • Olenius, T.; Kupiainen-Määttä, O.; Ortega, I. K.
  • The Journal of Chemical Physics, Vol. 139, Issue 8
  • DOI: 10.1063/1.4819024

Evaluation of diverse approaches for estimating sea-surface DMS concentration and air–sea exchange at global scale
journal, January 2016

  • Tesdal, Jan-Erik; Christian, James R.; Monahan, Adam H.
  • Environmental Chemistry, Vol. 13, Issue 2
  • DOI: 10.1071/EN14255

The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning
journal, January 2011

  • Wiedinmyer, C.; Akagi, S. K.; Yokelson, R. J.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-625-2011

Climate Forcing by Anthropogenic Aerosols
journal, January 1992


Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000: HISTORICAL BC/OC EMISSIONS
journal, May 2007

  • Bond, Tami C.; Bhardwaj, Ekta; Dong, Rong
  • Global Biogeochemical Cycles, Vol. 21, Issue 2
  • DOI: 10.1029/2006GB002840

Are there interactions of iodine and sulfur species in marine air photochemistry?
journal, January 1990

  • Chatfield, Robert B.; Crutzen, Paul J.
  • Journal of Geophysical Research, Vol. 95, Issue D13
  • DOI: 10.1029/JD095iD13p22319

Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol
journal, February 2015

  • Quinn, Patricia K.; Collins, Douglas B.; Grassian, Vicki H.
  • Chemical Reviews, Vol. 115, Issue 10
  • DOI: 10.1021/cr500713g

Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions
journal, January 2013

  • Woodhouse, M. T.; Mann, G. W.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2723-2013

The potential contribution of organic salts to new particle growth
journal, January 2009

  • Barsanti, K. C.; McMurry, P. H.; Smith, J. N.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-2949-2009

Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer
journal, December 2006

  • DeCarlo, Peter F.; Kimmel, Joel R.; Trimborn, Achim
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac061249n

Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site
journal, January 2016

  • Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 14
  • DOI: 10.5194/acp-16-9321-2016

Diffusion-Limited Versus Quasi-Equilibrium Aerosol Growth
journal, August 2012


The aerosol radiative effects of uncontrolled combustion of domestic waste
journal, January 2016

  • Kodros, John K.; Cucinotta, Rachel; Ridley, David A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 11
  • DOI: 10.5194/acp-16-6771-2016

Characterization of the aerosol over the sub-arctic north east Pacific Ocean
journal, October 2006

  • Phinney, Lisa; Richard Leaitch, W.; Lohmann, Ulrike
  • Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 53, Issue 20-22
  • DOI: 10.1016/j.dsr2.2006.05.044

Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events
journal, January 2011

  • Pierce, J. R.; Riipinen, I.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 17
  • DOI: 10.5194/acp-11-9019-2011

Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. 2. Systems Including Dissociation Equilibria
journal, May 2006

  • Clegg, Simon L.; Seinfeld, John H.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 17
  • DOI: 10.1021/jp056150j

Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations
journal, January 2011

  • Jaeglé, L.; Quinn, P. K.; Bates, T. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 7
  • DOI: 10.5194/acp-11-3137-2011

The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles
journal, June 2017

  • Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 27
  • DOI: 10.1073/pnas.1702420114

Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas
journal, January 2009

  • Bahreini, R.; Ervens, B.; Middlebrook, A. M.
  • Journal of Geophysical Research, Vol. 114
  • DOI: 10.1029/2008JD011493

Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes
journal, November 1992

  • Clegg, Simon L.; Pitzer, Kenneth S.; Brimblecombe, Peter
  • The Journal of Physical Chemistry, Vol. 96, Issue 23
  • DOI: 10.1021/j100202a074

Cloud, precipitation and radiation responses to large perturbations in global dimethyl sulfide
journal, January 2018

  • Fiddes, Sonya L.; Woodhouse, Matthew T.; Nicholls, Zebedee
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 14
  • DOI: 10.5194/acp-18-10177-2018

Photooxidation of dimethyl sulfide and dimethyl disulfide. II: Mechanism evaluation
journal, November 1990

  • Yin, Fangdon; Grosjean, Daniel; Flagan, Richard C.
  • Journal of Atmospheric Chemistry, Vol. 11, Issue 4
  • DOI: 10.1007/BF00053781

Dimethyl sulfide in the marine atmosphere
journal, January 1985

  • Andreae, M. O.; Ferek, R. J.; Bermond, F.
  • Journal of Geophysical Research, Vol. 90, Issue D7
  • DOI: 10.1029/JD090iD07p12891

Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ
journal, January 2018

  • Nault, Benjamin A.; Campuzano-Jost, Pedro; Day, Douglas A.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 24
  • DOI: 10.5194/acp-18-17769-2018

Sources and composition of submicron organic mass in marine aerosol particles: Marine Aerosol Organic Mass Composition
journal, November 2014

  • Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 22
  • DOI: 10.1002/2014JD021913

Small-scale variability patterns of DMS and phytoplankton in surface waters of the tropical and subtropical Atlantic, Indian, and Pacific Oceans
journal, January 2015

  • Royer, S. -J.; Mahajan, A. S.; Galí, M.
  • Geophysical Research Letters, Vol. 42, Issue 2
  • DOI: 10.1002/2014GL062543

A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month
journal, June 1999

  • Kettle, A. J.; Andreae, M. O.; Amouroux, D.
  • Global Biogeochemical Cycles, Vol. 13, Issue 2
  • DOI: 10.1029/1999GB900004

Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF
journal, January 2018

  • Regayre, Leighton A.; Johnson, Jill S.; Yoshioka, Masaru
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 13
  • DOI: 10.5194/acp-18-9975-2018

A parameterization of aerosol activation 3. Sectional representation
journal, January 2002

  • Abdul-Razzak, Hayder
  • Journal of Geophysical Research, Vol. 107, Issue D3
  • DOI: 10.1029/2001JD000483

Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics
journal, April 2006

  • Donahue, N. M.; Robinson, A. L.; Stanier, C. O.
  • Environmental Science & Technology, Vol. 40, Issue 8
  • DOI: 10.1021/es052297c

A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model
journal, June 2012


Advancing global aerosol simulations with size-segregated anthropogenic particle number emissions
journal, January 2018

  • Xausa, Filippo; Paasonen, Pauli; Makkonen, Risto
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 13
  • DOI: 10.5194/acp-18-10039-2018

The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty
journal, September 2017

  • Reddington, C. L.; Carslaw, K. S.; Stier, P.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 9
  • DOI: 10.1175/BAMS-D-15-00317.1

Stable sulphate clusters as a source of new atmospheric particles
journal, March 2000

  • Kulmala, Markku; Pirjola, Liisa; Mäkelä, Jyrki M.
  • Nature, Vol. 404, Issue 6773
  • DOI: 10.1038/35003550

A Computationally Efficient Aerosol Nucleation/ Condensation Method: Pseudo-Steady-State Sulfuric Acid
journal, February 2009


Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations
journal, January 2011

  • Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-3865-2011

An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry
journal, September 2016

  • Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 42
  • DOI: 10.1073/pnas.1606320113

Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO 2 chemistry
journal, January 2013

  • Pierce, J. R.; Evans, M. J.; Scott, C. E.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3163-2013

Comparison of global climatological maps of sea surface dimethyl sulfide: CLIMATOLOGIES OF MARINE DIMETHYL SULFIDE
journal, August 2004

  • Belviso, S.; Bopp, L.; Moulin, C.
  • Global Biogeochemical Cycles, Vol. 18, Issue 3
  • DOI: 10.1029/2003GB002193

Sulfur emissions to the atmosphere from natural sourees
journal, April 1992

  • Bates, T. S.; Lamb, B. K.; Guenther, A.
  • Journal of Atmospheric Chemistry, Vol. 14, Issue 1-4
  • DOI: 10.1007/BF00115242

Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

Marine aerosol production: a review of the current knowledge
journal, May 2007

  • O'Dowd, Colin D.; de Leeuw, Gerrit
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, Issue 1856
  • DOI: 10.1098/rsta.2007.2043

Dimethyl Sulfide and Dimethyl Sulfoxide and Their Oxidation in the Atmosphere
February 2006


Simulation of in situ ultrafine particle formation in the eastern United States using PMCAMx-UF
journal, January 2010

  • Jung, JaeGun; Fountoukis, Christos; Adams, Peter J.
  • Journal of Geophysical Research, Vol. 115, Issue D3
  • DOI: 10.1029/2009JD012313

Measurement of the gas phase concentration of H 2 SO 4 and methane sulfonic acid and estimates of H 2 SO 4 production and loss in the atmosphere
journal, May 1993

  • Eisele, F. L.; Tanner, D. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 98, Issue D5
  • DOI: 10.1029/93JD00031

The direct and indirect radiative effects of biogenic secondary organic aerosol
journal, January 2014

  • Scott, C. E.; Rap, A.; Spracklen, D. V.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 1
  • DOI: 10.5194/acp-14-447-2014

Parametrization of ternary nucleation rates for H 2 SO 4 -NH 3 -H 2 O vapors
journal, January 2002


Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology
journal, January 2003


Model for acid-base chemistry in nanoparticle growth (MABNAG)
journal, January 2013

  • Yli-Juuti, T.; Barsanti, K.; Hildebrandt Ruiz, L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 24
  • DOI: 10.5194/acp-13-12507-2013

Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models
journal, November 2000

  • Kettle, A. J.; Andreae, M. O.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D22
  • DOI: 10.1029/2000JD900252

Natural aerosol direct and indirect radiative effects: NATURAL AEROSOL RADIATIVE EFFECTS
journal, June 2013

  • Rap, Alexandru; Scott, Catherine E.; Spracklen, Dominick V.
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50441

Size distribution and chemical composition of marine aerosols: a compilation and review
journal, September 2000


Inversion of aerosol data from the epiphaniometer
journal, January 1991

  • Pandis, Spyros N.; Baltensperger, Urs; Wolfenbarger, J. Kenneth
  • Journal of Aerosol Science, Vol. 22, Issue 4
  • DOI: 10.1016/0021-8502(91)90002-Y

FT-IR product study on the photo-oxidation of dimethyl sulphide in the presence of NOx—temperature dependence
journal, August 2001


Dependence of DMS global sea-air flux distribution on transfer velocity and concentration field type: DMS GLOBAL SEA-AIR FLUX DISTRIBUTION
journal, April 2009

  • Elliott, Scott
  • Journal of Geophysical Research: Biogeosciences, Vol. 114, Issue G2
  • DOI: 10.1029/2008JG000710

Efficiency of cloud condensation nuclei formation from ultrafine particles
journal, January 2007


Representation of nucleation mode microphysics in a global aerosol model with sectional microphysics
journal, January 2013

  • Lee, Y. H.; Pierce, J. R.; Adams, P. J.
  • Geoscientific Model Development, Vol. 6, Issue 4
  • DOI: 10.5194/gmd-6-1221-2013

Abiotic and biotic sources influencing spring new particle formation in North East Greenland
journal, October 2018


Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates
journal, January 2009


Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data
journal, January 2009

  • Ulbrich, I. M.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-2891-2009

Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer
journal, January 2007

  • Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.
  • Mass Spectrometry Reviews, Vol. 26, Issue 2
  • DOI: 10.1002/mas.20115

Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study
journal, January 2008

  • Korhonen, Hannele; Carslaw, Kenneth S.; Spracklen, Dominick V.
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2007JD009718

Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site
journal, January 2018

  • Chen, Haihan; Hodshire, Anna L.; Ortega, John
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 1
  • DOI: 10.5194/acp-18-311-2018

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models
journal, January 2008

  • Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2008JD009944

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
journal, January 2007

  • Petters, M. D.; Kreidenweis, S. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1961-2007

Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER
journal, July 2018

  • Schroder, J. C.; Campuzano-Jost, P.; Day, D. A.
  • Journal of Geophysical Research: Atmospheres
  • DOI: 10.1029/2018JD028475

Real-time aerosol mass spectrometry with millisecond resolution
journal, May 2011

  • Kimmel, Joel R.; Farmer, Delphine K.; Cubison, Michael J.
  • International Journal of Mass Spectrometry, Vol. 303, Issue 1
  • DOI: 10.1016/j.ijms.2010.12.004

MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP
journal, January 2017

  • Li, Meng; Zhang, Qiang; Kurokawa, Jun-ichi
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 2
  • DOI: 10.5194/acp-17-935-2017

An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean: UPDATED DMS CLIMATOLOGY
journal, January 2011

  • Lana, A.; Bell, T. G.; Simó, R.
  • Global Biogeochemical Cycles, Vol. 25, Issue 1
  • DOI: 10.1029/2010GB003850

Year-round record of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) – Part 2: Biogenic sulfur (sulfate and methanesulfonate) aerosol
journal, January 2017

  • Legrand, Michel; Preunkert, Susanne; Weller, Rolf
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 22
  • DOI: 10.5194/acp-17-14055-2017

Atmospheric aerosol models for systems including the ions H + , NH 4 + , Na + , SO 4 2− , NO 3 , Cl , Br , and H 2 O
journal, January 2002


Limitations in the enhancement of visible light absorption due to mixing state
journal, January 2006

  • Bond, Tami C.; Habib, Gazala; Bergstrom, Robert W.
  • Journal of Geophysical Research, Vol. 111, Issue D20
  • DOI: 10.1029/2006JD007315

New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature
journal, December 2016

  • Chen, Haihan; Finlayson-Pitts, Barbara J.
  • Environmental Science & Technology, Vol. 51, Issue 1
  • DOI: 10.1021/acs.est.6b04173

Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles: ORGANIC CONDENSATION
journal, August 2011

  • Donahue, N. M.; Trump, E. R.; Pierce, J. R.
  • Geophysical Research Letters, Vol. 38, Issue 16
  • DOI: 10.1029/2011GL048115

Chemical Transformation of Methanesulfonic Acid and Sodium Methanesulfonate through Heterogeneous OH Oxidation
journal, July 2018


Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal regions
journal, January 2008

  • Preunkert, Susanne; Jourdain, Bruno; Legrand, Michel
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2008JD009937

Methane sulfonic acid-enhanced formation of molecular clusters of sulfuric acid and dimethyl amine
journal, January 2014


Heterogeneous Oxidation of Particulate Methanesulfonic Acid by the Hydroxyl Radical: Kinetics and Atmospheric Implications
journal, December 2017


Gas-aerosol relationships of H 2 SO 4 , MSA, and OH: Observations in the coastal marine boundary layer at Mace Head, Ireland
journal, January 2002


Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. 1. The Acids as Nondissociating Components
journal, May 2006

  • Clegg, Simon L.; Seinfeld, John H.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 17
  • DOI: 10.1021/jp056149k

H 2 SO 4 vapor pressure of sulfuric acid and ammonium sulfate solutions
journal, February 1997

  • Marti, James J.; Jefferson, Anne; Cai, Xiao Ping
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D3
  • DOI: 10.1029/96JD03064

Pollution and the planetary albedo
journal, December 1974


Predicting global aerosol size distributions in general circulation models
journal, January 2002


Formation and growth of nucleated particles into cloud condensation nuclei: model–measurement comparison
journal, January 2013

  • Westervelt, D. M.; Pierce, J. R.; Riipinen, I.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 15
  • DOI: 10.5194/acp-13-7645-2013

Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate
journal, April 1987

  • Charlson, Robert J.; Lovelock, James E.; Andreae, Meinrat O.
  • Nature, Vol. 326, Issue 6114
  • DOI: 10.1038/326655a0

Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer
journal, January 2008

  • Zorn, S. R.; Drewnick, F.; Schott, M.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 16
  • DOI: 10.5194/acp-8-4711-2008