DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization

Abstract

Self-assembly processes, while promising for enabling the fabrication of complexly organized nanomaterials from nanoparticles, are often limited in creating structures with multiscale order. These limitations are due to difficulties in practically realizing the assembly processes required to achieve such complex organizations. For a long time, a hierarchical assembly attracted interest as a potentially powerful approach. However, due to the experimental limitations, intermediate-level structures are often heterogeneous in composition and structure, which significantly impacts the formation of large-scale organizations. Here, we introduce a two-stage assembly strategy: DNA origami frames scaffold a coordination of nanoparticles into designed 3D nanoclusters, and then these clusters are assembled into ordered lattices whose types are determined by the clusters’ valence. Through modulating the nanocluster architectures and intercluster bindings, we demonstrate the successful formation of complexly organized nanoparticle crystals. To conclude, the presented two-stage assembly method provides a powerful fabrication strategy for creating nanoparticle superlattices with prescribed unit cells.

Authors:
 [1];  [2]; ORCiD logo [1];  [3];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [1]
  1. Nanjing Univ. (China)
  2. European Synchrotron Radiation Facility (ESRF), Grenoble (France)
  3. Chinese Academy of Sciences (CAS), Shanghai (China)
  4. Nanjing Univ. (China); Univ. of Warwick, Coventry (United Kingdom)
  5. Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC); Fundamental Research Funds for the Central Universities; Shenzhen International Cooperation Research Project; China National Postdoctoral Program for Innovative Talents
OSTI Identifier:
1890435
Report Number(s):
BNL-223528-2022-JAAM
Journal ID: ISSN 1530-6984
Grant/Contract Number:  
SC0012704; SC0008772; 21834004; 92056114; 020514380255; 21971109; 11874199; GJHZ20180930090602235; BX2021119
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 22; Journal Issue: 9; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; DNA nanotechnology; DNA origami; self-assembly; nanoparticles; DNA nanostructures

Citation Formats

Dong, Yuxiang, Liu, Jiliang, Lu, Xuanzhao, Duan, Jialin, Zhou, Liqi, Dai, Lizhi, Ji, Min, Ma, Ningning, Wang, Yong, Wang, Peng, Zhu, Jun-Jie, Min, Qianhao, Gang, Oleg, and Tian, Ye. Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization. United States: N. p., 2022. Web. doi:10.1021/acs.nanolett.2c00942.
Dong, Yuxiang, Liu, Jiliang, Lu, Xuanzhao, Duan, Jialin, Zhou, Liqi, Dai, Lizhi, Ji, Min, Ma, Ningning, Wang, Yong, Wang, Peng, Zhu, Jun-Jie, Min, Qianhao, Gang, Oleg, & Tian, Ye. Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization. United States. https://doi.org/10.1021/acs.nanolett.2c00942
Dong, Yuxiang, Liu, Jiliang, Lu, Xuanzhao, Duan, Jialin, Zhou, Liqi, Dai, Lizhi, Ji, Min, Ma, Ningning, Wang, Yong, Wang, Peng, Zhu, Jun-Jie, Min, Qianhao, Gang, Oleg, and Tian, Ye. Mon . "Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization". United States. https://doi.org/10.1021/acs.nanolett.2c00942. https://www.osti.gov/servlets/purl/1890435.
@article{osti_1890435,
title = {Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization},
author = {Dong, Yuxiang and Liu, Jiliang and Lu, Xuanzhao and Duan, Jialin and Zhou, Liqi and Dai, Lizhi and Ji, Min and Ma, Ningning and Wang, Yong and Wang, Peng and Zhu, Jun-Jie and Min, Qianhao and Gang, Oleg and Tian, Ye},
abstractNote = {Self-assembly processes, while promising for enabling the fabrication of complexly organized nanomaterials from nanoparticles, are often limited in creating structures with multiscale order. These limitations are due to difficulties in practically realizing the assembly processes required to achieve such complex organizations. For a long time, a hierarchical assembly attracted interest as a potentially powerful approach. However, due to the experimental limitations, intermediate-level structures are often heterogeneous in composition and structure, which significantly impacts the formation of large-scale organizations. Here, we introduce a two-stage assembly strategy: DNA origami frames scaffold a coordination of nanoparticles into designed 3D nanoclusters, and then these clusters are assembled into ordered lattices whose types are determined by the clusters’ valence. Through modulating the nanocluster architectures and intercluster bindings, we demonstrate the successful formation of complexly organized nanoparticle crystals. To conclude, the presented two-stage assembly method provides a powerful fabrication strategy for creating nanoparticle superlattices with prescribed unit cells.},
doi = {10.1021/acs.nanolett.2c00942},
journal = {Nano Letters},
number = 9,
volume = 22,
place = {United States},
year = {Mon Apr 25 00:00:00 EDT 2022},
month = {Mon Apr 25 00:00:00 EDT 2022}
}

Works referenced in this record:

Crystal engineering with DNA
journal, February 2019

  • Laramy, Christine R.; O’Brien, Matthew N.; Mirkin, Chad A.
  • Nature Reviews Materials, Vol. 4, Issue 3
  • DOI: 10.1038/s41578-019-0087-2

Three-dimensional DNA-programmable nanoparticle superlattices
journal, June 2020


DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems
journal, October 2013

  • Zhang, Yugang; Lu, Fang; Yager, Kevin G.
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.209

3D Lattice Engineering of Nanoparticles by DNA Shells
journal, February 2019


Single-crystal Winterbottom constructions of nanoparticle superlattices
journal, March 2020

  • Lewis, Diana J.; Zornberg, Leonardo Z.; Carter, David J. D.
  • Nature Materials, Vol. 19, Issue 7
  • DOI: 10.1038/s41563-020-0643-6

Particle analogs of electrons in colloidal crystals
journal, June 2019


Topotactic Interconversion of Nanoparticle Superlattices
journal, August 2013


Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

Colloidal crystal engineering with metal–organic framework nanoparticles and DNA
journal, May 2020


DNA-mediated engineering of multicomponent enzyme crystals
journal, March 2015

  • Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 15
  • DOI: 10.1073/pnas.1503533112

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Phase Behavior of Nanoparticles Assembled by DNA Linkers
journal, January 2009


Diamond family of nanoparticle superlattices
journal, February 2016


Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels
journal, January 2020


DNA-Encoded Protein Janus Nanoparticles
journal, June 2018

  • Hayes, Oliver G.; McMillan, Janet R.; Lee, Byeongdu
  • Journal of the American Chemical Society, Vol. 140, Issue 29
  • DOI: 10.1021/jacs.8b05640

Programmable Assembly of Iron Oxide Nanoparticles Using DNA Origami
journal, March 2020


Programming Surface-Enhanced Raman Scattering of DNA Origami-templated Metamolecules
journal, April 2020


Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules
journal, September 2019


Site-Specific Synthesis and In Situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds by Use of the Tollens Reaction
journal, April 2011

  • Pal, Suchetan; Varghese, Reji; Deng, Zhengtao
  • Angewandte Chemie International Edition, Vol. 50, Issue 18
  • DOI: 10.1002/anie.201007529

Valence-programmable nanoparticle architectures
journal, May 2020


Self-Assembly of Molecule-like Nanoparticle Clusters Directed by DNA Nanocages
journal, March 2015

  • Li, Yulin; Liu, Zhiyu; Yu, Guimei
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b01196

Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly
journal, December 2019


Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm
journal, October 2013

  • Srinivasan, B.; Vo, T.; Zhang, Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 46
  • DOI: 10.1073/pnas.1316533110

Supra-Nanoparticle Functional Assemblies through Programmable Stacking
journal, June 2017

  • Tian, Cheng; Cordeiro, Marco Aurelio L.; Lhermitte, Julien
  • ACS Nano, Vol. 11, Issue 7
  • DOI: 10.1021/acsnano.7b02671

Self-assembly route for photonic crystals with a bandgap in the visible region
journal, February 2007

  • Hynninen, Antti-Pekka; Thijssen, Job H. J.; Vermolen, Esther C. M.
  • Nature Materials, Vol. 6, Issue 3
  • DOI: 10.1038/nmat1841

Colloidal alloys with preassembled clusters and spheres
journal, February 2017

  • Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra
  • Nature Materials, Vol. 16, Issue 6
  • DOI: 10.1038/nmat4869

Colloidal diamond
journal, September 2020


Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials
journal, June 2016

  • Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03966

Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches
journal, May 2020


A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo
journal, February 2018

  • Li, Suping; Jiang, Qiao; Liu, Shaoli
  • Nature Biotechnology, Vol. 36, Issue 3
  • DOI: 10.1038/nbt.4071

Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion
journal, February 2016

  • Zhao, Zhao; Fu, Jinglin; Dhakal, Soma
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10619

Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold
journal, May 2016

  • Ke, Guoliang; Liu, Minghui; Jiang, Shuoxing
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201603183

Reconfigurable 3D plasmonic metamolecules
journal, July 2014

  • Kuzyk, Anton; Schreiber, Robert; Zhang, Hui
  • Nature Materials, Vol. 13, Issue 9
  • DOI: 10.1038/nmat4031

DNA Origami‐Based Nanoprinting for the Assembly of Plasmonic Nanostructures with Single‐Molecule Surface‐Enhanced Raman Scattering
journal, April 2021

  • Niu, Renjie; Song, Chunyuan; Gao, Fei
  • Angewandte Chemie International Edition, Vol. 60, Issue 21
  • DOI: 10.1002/anie.202016014

Programmable Assembly of Nano‐architectures through Designing Anisotropic DNA Origami Patches
journal, February 2020


Stepwise assembly of nanoclusters guided by DNA origami frames with high-throughput
journal, January 2020

  • Xin, Xiaodong; Wang, Lihui; Wang, Kaiwei
  • Chemical Communications, Vol. 56, Issue 36
  • DOI: 10.1039/D0CC00274G

Programmable Cocrystallization of DNA Origami Shapes
journal, December 2020

  • Ji, Min; Liu, Jiliang; Dai, Lizhi
  • Journal of the American Chemical Society, Vol. 142, Issue 51
  • DOI: 10.1021/jacs.0c08525

Lattice engineering through nanoparticle–DNA frameworks
journal, February 2016

  • Tian, Ye; Zhang, Yugang; Wang, Tong
  • Nature Materials, Vol. 15, Issue 6, p. 654-661
  • DOI: 10.1038/nmat4571

Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames
journal, May 2015


Engineering Organization of DNA Nano-Chambers through Dimensionally Controlled and Multi-Sequence Encoded Differentiated Bonds
journal, September 2020

  • Lin, Zhiwei; Emamy, Hamed; Minevich, Brian
  • Journal of the American Chemical Society, Vol. 142, Issue 41
  • DOI: 10.1021/jacs.0c07263

DNA origami single crystals with Wulff shapes
journal, May 2021


Design of DNA Origami Diamond Photonic Crystals
journal, December 2019

  • Park, Sung Hun; Park, Haedong; Hur, Kahyun
  • ACS Applied Bio Materials, Vol. 3, Issue 1
  • DOI: 10.1021/acsabm.9b01171

Environment-Resistant DNA Origami Crystals Bridged by Rigid DNA Rods with Adjustable Unit Cells
journal, April 2021


3D DNA Origami Crystals
journal, May 2018

  • Zhang, Tao; Hartl, Caroline; Frank, Kilian
  • Advanced Materials, Vol. 30, Issue 28
  • DOI: 10.1002/adma.201800273

Three-Dimensional Patterning of Nanoparticles by Molecular Stamping
journal, May 2020


Design principles for photonic crystals based on plasmonic nanoparticle superlattices
journal, June 2018

  • Sun, Lin; Lin, Haixin; Kohlstedt, Kevin L.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 28
  • DOI: 10.1073/pnas.1800106115

Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions
journal, October 2020