DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels

Abstract

The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. As such, here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object’s valence and coordination to be determined by the frame’s vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.

Authors:
 [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [2]; ORCiD logo [3];  [5];  [5];  [2];  [4];  [4];  [4];  [4]; ORCiD logo [6]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Nanjing Univ. (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  3. Van Andel Inst., Grand Rapids, MI (United States)
  4. Columbia Univ., New York, NY (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
Jiangsu Youth Fund of China; Fundamental Research Funds for the Central Universities (China); National Institutes of Health (NIH); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1600469
Report Number(s):
BNL-213632-2020-JAAM
Journal ID: ISSN 1476-1122
Grant/Contract Number:  
SC0012704; BK20180337; 14380151; GM111472; GM124170; SC0008772
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 19; Journal Issue: 7; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Nanoparticles; Nanoscale materials; Organizing materials with DNA; Self-assembly

Citation Formats

Tian, Ye, Lhermitte, Julien R., Bai, Lin, Vo, Thi, Xin, Huolin L., Li, Huilin, Li, Ruipeng, Fukuto, Masafumi, Yager, Kevin G., Kahn, Jason S., Xiong, Yan, Minevich, Brian, Kumar, Sanat K., and Gang, Oleg. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. United States: N. p., 2020. Web. doi:10.1038/s41563-019-0550-x.
Tian, Ye, Lhermitte, Julien R., Bai, Lin, Vo, Thi, Xin, Huolin L., Li, Huilin, Li, Ruipeng, Fukuto, Masafumi, Yager, Kevin G., Kahn, Jason S., Xiong, Yan, Minevich, Brian, Kumar, Sanat K., & Gang, Oleg. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. United States. https://doi.org/10.1038/s41563-019-0550-x
Tian, Ye, Lhermitte, Julien R., Bai, Lin, Vo, Thi, Xin, Huolin L., Li, Huilin, Li, Ruipeng, Fukuto, Masafumi, Yager, Kevin G., Kahn, Jason S., Xiong, Yan, Minevich, Brian, Kumar, Sanat K., and Gang, Oleg. Mon . "Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels". United States. https://doi.org/10.1038/s41563-019-0550-x. https://www.osti.gov/servlets/purl/1600469.
@article{osti_1600469,
title = {Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels},
author = {Tian, Ye and Lhermitte, Julien R. and Bai, Lin and Vo, Thi and Xin, Huolin L. and Li, Huilin and Li, Ruipeng and Fukuto, Masafumi and Yager, Kevin G. and Kahn, Jason S. and Xiong, Yan and Minevich, Brian and Kumar, Sanat K. and Gang, Oleg},
abstractNote = {The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. As such, here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object’s valence and coordination to be determined by the frame’s vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.},
doi = {10.1038/s41563-019-0550-x},
journal = {Nature Materials},
number = 7,
volume = 19,
place = {United States},
year = {Mon Jan 13 00:00:00 EST 2020},
month = {Mon Jan 13 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 120 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quasicrystalline order in self-assembled binary nanoparticle superlattices
journal, October 2009

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08439

Electronic Energy Transfer in CdSe Quantum Dot Solids
journal, February 1996


Diamond family of nanoparticle superlattices
journal, February 2016


A general theory of DNA-mediated and other valence-limited colloidal interactions
journal, September 2012

  • Varilly, Patrick; Angioletti-Uberti, Stefano; Mognetti, Bortolo M.
  • The Journal of Chemical Physics, Vol. 137, Issue 9
  • DOI: 10.1063/1.4748100

Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems
journal, December 2013

  • Yager, Kevin G.; Zhang, Yugang; Lu, Fang
  • Journal of Applied Crystallography, Vol. 47, Issue 1
  • DOI: 10.1107/S160057671302832X

Colloidal quantum dot light-emitting devices
journal, January 2010


Full-colour quantum dot displays fabricated by transfer printing
journal, February 2011


Enzyme cascades activated on topologically programmed DNA scaffolds
journal, March 2009

  • Wilner, Ofer I.; Weizmann, Yossi; Gill, Ron
  • Nature Nanotechnology, Vol. 4, Issue 4
  • DOI: 10.1038/nnano.2009.50

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Quantum-dot supercrystals for future nanophotonics
journal, April 2013

  • Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01727

Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
journal, November 2011

  • Damasceno, Pablo F.; Engel, Michael; Glotzer, Sharon C.
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn204012y

DNA-programmed mesoscopic architecture
journal, June 2013


Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Lattice engineering through nanoparticle–DNA frameworks
journal, February 2016

  • Tian, Ye; Zhang, Yugang; Wang, Tong
  • Nature Materials, Vol. 15, Issue 6, p. 654-661
  • DOI: 10.1038/nmat4571

Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion
journal, February 2016

  • Zhao, Zhao; Fu, Jinglin; Dhakal, Soma
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10619

Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs
journal, July 2006

  • Zheng, Jiwen; Constantinou, Pamela E.; Micheel, Christine
  • Nano Letters, Vol. 6, Issue 7
  • DOI: 10.1021/nl060994c

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Fluids with highly directional attractive forces. III. Multiple attraction sites
journal, February 1986

  • Wertheim, M. S.
  • Journal of Statistical Physics, Vol. 42, Issue 3-4
  • DOI: 10.1007/BF01127721

A mechanical metamaterial made from a DNA hydrogel
journal, December 2012

  • Lee, Jong Bum; Peng, Songming; Yang, Dayong
  • Nature Nanotechnology, Vol. 7, Issue 12
  • DOI: 10.1038/nnano.2012.211

Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Stoichiometric control of DNA-grafted colloid self-assembly
journal, April 2015

  • Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1420907112

A device that operates within a self-assembled 3D DNA crystal
journal, March 2017

  • Hao, Yudong; Kristiansen, Martin; Sha, Ruojie
  • Nature Chemistry, Vol. 9, Issue 8
  • DOI: 10.1038/nchem.2745

Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling
journal, September 2011

  • Rogers, W. B.; Crocker, J. C.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 38
  • DOI: 10.1073/pnas.1109853108

High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films
journal, February 2005


DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights
journal, May 2010


Mesophase behaviour of polyhedral particles
journal, February 2011

  • Agarwal, Umang; Escobedo, Fernando A.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2959

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures
journal, March 2012

  • Fu, Jinglin; Liu, Minghui; Liu, Yan
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja300897h

Nucleic acid junctions and lattices
journal, November 1982


3D DNA Origami Crystals
journal, May 2018

  • Zhang, Tao; Hartl, Caroline; Frank, Kilian
  • Advanced Materials, Vol. 30, Issue 28
  • DOI: 10.1002/adma.201800273

From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal
journal, September 2009

  • Zheng, Jianping; Birktoft, Jens J.; Chen, Yi
  • Nature, Vol. 461, Issue 7260
  • DOI: 10.1038/nature08274

An Organic Semiconductor Organized into 3D DNA Arrays by “Bottom-up” Rational Design
journal, May 2017

  • Wang, Xiao; Sha, Ruojie; Kristiansen, Martin
  • Angewandte Chemie International Edition, Vol. 56, Issue 23
  • DOI: 10.1002/anie.201700462

DNA in a material world
journal, January 2003


DNA-Directed Assembly of Bienzymic Complexes from In Vivo Biotinylated NAD(P)H:FMN Oxidoreductase and Luciferase
journal, March 2002


Evidence of Quantum Resonance in Periodically-Ordered Three-Dimensional Superlattice of CdTe Quantum Dots
journal, June 2015


Next-Generation Digital Information Storage in DNA
journal, August 2012


Synthesis from DNA of a molecule with the connectivity of a cube
journal, April 1991

  • Chen, Junghuei; Seeman, Nadrian C.
  • Nature, Vol. 350, Issue 6319
  • DOI: 10.1038/350631a0

Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra
journal, March 2008


Self-assembly of DNA into nanoscale three-dimensional shapes
journal, May 2009

  • Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08016

An Organic Semiconductor Organized into 3D DNA Arrays by “Bottom-up” Rational Design
journal, May 2017

  • Wang, Xiao; Sha, Ruojie; Kristiansen, Martin
  • Angewandte Chemie, Vol. 129, Issue 23
  • DOI: 10.1002/ange.201700462

Electronic Energy Transfer in CdSe Quantum Dot Solids
journal, April 1996


3D DNA Origami Crystals
text, January 2018

  • Zhang, Tao; Hartl, Caroline; Frank, Kilian
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-00003

DNA-Programmed Mesoscopic Architecture
text, January 2013