skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on January 13, 2021

Title: Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels

Abstract

The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. As such, here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object’s valence and coordination to be determined by the frame’s vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.

Authors:
 [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [2]; ORCiD logo [3];  [5];  [5];  [2];  [4];  [4];  [4];  [4]; ORCiD logo [6]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Nanjing Univ. (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  3. Van Andel Inst., Grand Rapids, MI (United States)
  4. Columbia Univ., New York, NY (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
Jiangsu Youth Fund of China; Fundamental Research Funds for the Central Universities (China); National Institutes of Health (NIH); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1600469
Report Number(s):
[BNL-213632-2020-JAAM]
[Journal ID: ISSN 1476-1122]
Grant/Contract Number:  
[SC0012704; BK20180337; 14380151; GM111472; GM124170; SC0008772]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
[Journal Name: Nature Materials]; Journal ID: ISSN 1476-1122
Publisher:
Springer Nature - Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Nanoparticles; Nanoscale materials; Organizing materials with DNA; Self-assembly

Citation Formats

Tian, Ye, Lhermitte, Julien R., Bai, Lin, Vo, Thi, Xin, Huolin L., Li, Huilin, Li, Ruipeng, Fukuto, Masafumi, Yager, Kevin G., Kahn, Jason S., Xiong, Yan, Minevich, Brian, Kumar, Sanat K., and Gang, Oleg. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. United States: N. p., 2020. Web. doi:10.1038/s41563-019-0550-x.
Tian, Ye, Lhermitte, Julien R., Bai, Lin, Vo, Thi, Xin, Huolin L., Li, Huilin, Li, Ruipeng, Fukuto, Masafumi, Yager, Kevin G., Kahn, Jason S., Xiong, Yan, Minevich, Brian, Kumar, Sanat K., & Gang, Oleg. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. United States. doi:10.1038/s41563-019-0550-x.
Tian, Ye, Lhermitte, Julien R., Bai, Lin, Vo, Thi, Xin, Huolin L., Li, Huilin, Li, Ruipeng, Fukuto, Masafumi, Yager, Kevin G., Kahn, Jason S., Xiong, Yan, Minevich, Brian, Kumar, Sanat K., and Gang, Oleg. Mon . "Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels". United States. doi:10.1038/s41563-019-0550-x.
@article{osti_1600469,
title = {Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels},
author = {Tian, Ye and Lhermitte, Julien R. and Bai, Lin and Vo, Thi and Xin, Huolin L. and Li, Huilin and Li, Ruipeng and Fukuto, Masafumi and Yager, Kevin G. and Kahn, Jason S. and Xiong, Yan and Minevich, Brian and Kumar, Sanat K. and Gang, Oleg},
abstractNote = {The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. As such, here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object’s valence and coordination to be determined by the frame’s vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.},
doi = {10.1038/s41563-019-0550-x},
journal = {Nature Materials},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 13, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Mesophase behaviour of polyhedral particles
journal, February 2011

  • Agarwal, Umang; Escobedo, Fernando A.
  • Nature Materials, Vol. 10, Issue 3
  • DOI: 10.1038/nmat2959

Phase Diagram and Structural Diversity of a Family of Truncated Cubes: Degenerate Close-Packed Structures and Vacancy-Rich States
journal, July 2013


Quasicrystalline order in self-assembled binary nanoparticle superlattices
journal, October 2009

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08439

Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Nucleic acid junctions and lattices
journal, November 1982


Synthesis from DNA of a molecule with the connectivity of a cube
journal, April 1991

  • Chen, Junghuei; Seeman, Nadrian C.
  • Nature, Vol. 350, Issue 6319
  • DOI: 10.1038/350631a0

Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra
journal, March 2008


DNA in a material world
journal, January 2003


DNA-programmed mesoscopic architecture
journal, June 2013


Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs
journal, July 2006

  • Zheng, Jiwen; Constantinou, Pamela E.; Micheel, Christine
  • Nano Letters, Vol. 6, Issue 7
  • DOI: 10.1021/nl060994c

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Stoichiometric control of DNA-grafted colloid self-assembly
journal, April 2015

  • Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1420907112

DNA-Directed Assembly of Bienzymic Complexes from In Vivo Biotinylated NAD(P)H:FMN Oxidoreductase and Luciferase
journal, March 2002


A mechanical metamaterial made from a DNA hydrogel
journal, December 2012

  • Lee, Jong Bum; Peng, Songming; Yang, Dayong
  • Nature Nanotechnology, Vol. 7, Issue 12
  • DOI: 10.1038/nnano.2012.211

Next-Generation Digital Information Storage in DNA
journal, August 2012


From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal
journal, September 2009

  • Zheng, Jianping; Birktoft, Jens J.; Chen, Yi
  • Nature, Vol. 461, Issue 7260
  • DOI: 10.1038/nature08274

An Organic Semiconductor Organized into 3D DNA Arrays by “Bottom-up” Rational Design
journal, May 2017

  • Wang, Xiao; Sha, Ruojie; Kristiansen, Martin
  • Angewandte Chemie International Edition, Vol. 56, Issue 23
  • DOI: 10.1002/anie.201700462

A device that operates within a self-assembled 3D DNA crystal
journal, March 2017

  • Hao, Yudong; Kristiansen, Martin; Sha, Ruojie
  • Nature Chemistry, Vol. 9, Issue 8
  • DOI: 10.1038/nchem.2745

Self-assembly of DNA into nanoscale three-dimensional shapes
journal, May 2009

  • Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08016

3D DNA Origami Crystals
journal, May 2018

  • Zhang, Tao; Hartl, Caroline; Frank, Kilian
  • Advanced Materials, Vol. 30, Issue 28
  • DOI: 10.1002/adma.201800273

Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems
journal, December 2013

  • Yager, Kevin G.; Zhang, Yugang; Lu, Fang
  • Journal of Applied Crystallography, Vol. 47, Issue 1
  • DOI: 10.1107/S160057671302832X

Lattice engineering through nanoparticle–DNA frameworks
journal, February 2016

  • Tian, Ye; Zhang, Yugang; Wang, Tong
  • Nature Materials, Vol. 15, Issue 6, p. 654-661
  • DOI: 10.1038/nmat4571

Diamond family of nanoparticle superlattices
journal, February 2016


Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling
journal, September 2011

  • Rogers, W. B.; Crocker, J. C.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 38
  • DOI: 10.1073/pnas.1109853108

A general theory of DNA-mediated and other valence-limited colloidal interactions
journal, September 2012

  • Varilly, Patrick; Angioletti-Uberti, Stefano; Mognetti, Bortolo M.
  • The Journal of Chemical Physics, Vol. 137, Issue 9
  • DOI: 10.1063/1.4748100

Binary nanoparticle superlattices of soft-particle systems
journal, July 2015


Fluids with highly directional attractive forces. III. Multiple attraction sites
journal, February 1986

  • Wertheim, M. S.
  • Journal of Statistical Physics, Vol. 42, Issue 3-4
  • DOI: 10.1007/BF01127721

Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
journal, November 2011

  • Damasceno, Pablo F.; Engel, Michael; Glotzer, Sharon C.
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn204012y

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights
journal, May 2010


Full-colour quantum dot displays fabricated by transfer printing
journal, February 2011


Colloidal quantum dot light-emitting devices
journal, January 2010


High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films
journal, February 2005


Electronic Energy Transfer in CdSe Quantum Dot Solids
journal, February 1996


Quantum-dot supercrystals for future nanophotonics
journal, April 2013

  • Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01727

Evidence of Quantum Resonance in Periodically-Ordered Three-Dimensional Superlattice of CdTe Quantum Dots
journal, June 2015


Enzyme cascades activated on topologically programmed DNA scaffolds
journal, March 2009

  • Wilner, Ofer I.; Weizmann, Yossi; Gill, Ron
  • Nature Nanotechnology, Vol. 4, Issue 4
  • DOI: 10.1038/nnano.2009.50

Interenzyme Substrate Diffusion for an Enzyme Cascade Organized on Spatially Addressable DNA Nanostructures
journal, March 2012

  • Fu, Jinglin; Liu, Minghui; Liu, Yan
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja300897h

Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion
journal, February 2016

  • Zhao, Zhao; Fu, Jinglin; Dhakal, Soma
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10619