DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector

Abstract

The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology, will cover the pseudo-rapidity region of 2.4 < |n| < 4.0 with two end caps on each side and a total area of 6.4 m2. The timing performance can be improved by implanting an internal gain layer that can produce signals with a fast rising edge. It significantly improves the signal-to-noise ratio. The required average timing resolution per track for a minimum ionizing particle is 30 ps at the start and 50 ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1MeV neutron-equivalent fluence up to 2.5 1015 neq/cm2 including a safety factor of 1.5 before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-ups at the HL-LHC. The layout and performance of the various versions of LGAD prototypes produced by Hamamatsu (HPK) have been studied by the ATLAS Collaboration. The breakdown voltages, depletion voltages, inter-pad gaps, collected charge as well as the timemore » resolution have been measured and the production yield of large size sensors has been evaluated.« less

Authors:
 [1];  [2];  [3];  [4];  [4];  [5];  [1];  [6];  [7];  [8]; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
  1. Univ. of Science and Technology of China, Hefei (China). State Key Lab. of Particle Detection and Electronics. Dept. of Modern Physics
  2. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  3. Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation)
  4. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics
  5. Universitat Autónoma de Barcelona (UAB), Barcelona (Spain). Institut de Física d’Altes Energies (IFAE)
  6. Univ. of California, Santa Cruz, CA (United States). Santa Cruz Institute for Particle Physics (SCIPP)
  7. Jozef Stefan Inst. (IJS), Ljubljana (Slovenia)
  8. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics; Univ. of Chinese Academy of Sciences, Beijing (China)
Publication Date:
Research Org.:
Univ. of California, Santa Cruz, CA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1849517
Alternate Identifier(s):
OSTI ID: 1646944
Grant/Contract Number:  
FG02-04ER41286; SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 980; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; Instruments & Instrumentation; Nuclear Science & Technology; Physics; Low-Gain Avalanche Detector; HGTD; Timing Detector

Citation Formats

Yang, X., Alderweireldt, S., Atanov, N., Ayoub, M. K., da Costa, J. Barreiro Guimaraes, García, L. Castillo, Chen, H., Christie, S., Cindro, V., Cui, H., D’Amen, G., Davydov, Y., Fan, Y. Y., Galloway, Z., Ge, J. J., Gee, C., Giacomini, G., Gkougkousis, E. L., Grieco, C., Grinstein, S., Grosse-Knetter, J., Guindon, S., Han, S., Howard, A., Huang, Y. P., Jin, Y., Jing, M. Q., Kiuchi, R., Kramberger, G., Kuwertz, E., Labitan, C., Lange, J., Leite, M., Li, C. H., Li, Q. Y., Liu, B., Liu, J. Y., Liu, Y. W., Liang, H., Liang, Z. J., Lockerby, M., Lyu, F., Mandić, I., Martinez-Mckinney, F., Mazza, S. M., Mikuž, M., Padilla, R., Qi, B. H., Quadt, A., Ran, K. L., Ren, H., Rizzi, C., Rossi, E., Sadrozinski, H. F. -W., Saito, G. T., Schumm, B., Schwickardi, M., Seiden, A., Shan, L. Y., Shi, L. S., Shi, X., Ferreira, A. Soares Canas, Sun, Y. J., Tan, Y. H., Tricoli, A., Wan, G. Y., Wilder, M., Wu, K. W., Wyatt, W., Xiao, S. Y., Yang, T., Yang, Y. Z., Yu, C. J., Zhao, L., Zhao, M., Zhao, Y., Zhao, Z. G., Zheng, X. X., and Zhuang, X. A. Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector. United States: N. p., 2020. Web. doi:10.1016/j.nima.2020.164379.
Yang, X., Alderweireldt, S., Atanov, N., Ayoub, M. K., da Costa, J. Barreiro Guimaraes, García, L. Castillo, Chen, H., Christie, S., Cindro, V., Cui, H., D’Amen, G., Davydov, Y., Fan, Y. Y., Galloway, Z., Ge, J. J., Gee, C., Giacomini, G., Gkougkousis, E. L., Grieco, C., Grinstein, S., Grosse-Knetter, J., Guindon, S., Han, S., Howard, A., Huang, Y. P., Jin, Y., Jing, M. Q., Kiuchi, R., Kramberger, G., Kuwertz, E., Labitan, C., Lange, J., Leite, M., Li, C. H., Li, Q. Y., Liu, B., Liu, J. Y., Liu, Y. W., Liang, H., Liang, Z. J., Lockerby, M., Lyu, F., Mandić, I., Martinez-Mckinney, F., Mazza, S. M., Mikuž, M., Padilla, R., Qi, B. H., Quadt, A., Ran, K. L., Ren, H., Rizzi, C., Rossi, E., Sadrozinski, H. F. -W., Saito, G. T., Schumm, B., Schwickardi, M., Seiden, A., Shan, L. Y., Shi, L. S., Shi, X., Ferreira, A. Soares Canas, Sun, Y. J., Tan, Y. H., Tricoli, A., Wan, G. Y., Wilder, M., Wu, K. W., Wyatt, W., Xiao, S. Y., Yang, T., Yang, Y. Z., Yu, C. J., Zhao, L., Zhao, M., Zhao, Y., Zhao, Z. G., Zheng, X. X., & Zhuang, X. A. Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector. United States. https://doi.org/10.1016/j.nima.2020.164379
Yang, X., Alderweireldt, S., Atanov, N., Ayoub, M. K., da Costa, J. Barreiro Guimaraes, García, L. Castillo, Chen, H., Christie, S., Cindro, V., Cui, H., D’Amen, G., Davydov, Y., Fan, Y. Y., Galloway, Z., Ge, J. J., Gee, C., Giacomini, G., Gkougkousis, E. L., Grieco, C., Grinstein, S., Grosse-Knetter, J., Guindon, S., Han, S., Howard, A., Huang, Y. P., Jin, Y., Jing, M. Q., Kiuchi, R., Kramberger, G., Kuwertz, E., Labitan, C., Lange, J., Leite, M., Li, C. H., Li, Q. Y., Liu, B., Liu, J. Y., Liu, Y. W., Liang, H., Liang, Z. J., Lockerby, M., Lyu, F., Mandić, I., Martinez-Mckinney, F., Mazza, S. M., Mikuž, M., Padilla, R., Qi, B. H., Quadt, A., Ran, K. L., Ren, H., Rizzi, C., Rossi, E., Sadrozinski, H. F. -W., Saito, G. T., Schumm, B., Schwickardi, M., Seiden, A., Shan, L. Y., Shi, L. S., Shi, X., Ferreira, A. Soares Canas, Sun, Y. J., Tan, Y. H., Tricoli, A., Wan, G. Y., Wilder, M., Wu, K. W., Wyatt, W., Xiao, S. Y., Yang, T., Yang, Y. Z., Yu, C. J., Zhao, L., Zhao, M., Zhao, Y., Zhao, Z. G., Zheng, X. X., and Zhuang, X. A. Mon . "Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector". United States. https://doi.org/10.1016/j.nima.2020.164379. https://www.osti.gov/servlets/purl/1849517.
@article{osti_1849517,
title = {Layout and performance of HPK prototype LGAD sensors for the High-Granularity Timing Detector},
author = {Yang, X. and Alderweireldt, S. and Atanov, N. and Ayoub, M. K. and da Costa, J. Barreiro Guimaraes and García, L. Castillo and Chen, H. and Christie, S. and Cindro, V. and Cui, H. and D’Amen, G. and Davydov, Y. and Fan, Y. Y. and Galloway, Z. and Ge, J. J. and Gee, C. and Giacomini, G. and Gkougkousis, E. L. and Grieco, C. and Grinstein, S. and Grosse-Knetter, J. and Guindon, S. and Han, S. and Howard, A. and Huang, Y. P. and Jin, Y. and Jing, M. Q. and Kiuchi, R. and Kramberger, G. and Kuwertz, E. and Labitan, C. and Lange, J. and Leite, M. and Li, C. H. and Li, Q. Y. and Liu, B. and Liu, J. Y. and Liu, Y. W. and Liang, H. and Liang, Z. J. and Lockerby, M. and Lyu, F. and Mandić, I. and Martinez-Mckinney, F. and Mazza, S. M. and Mikuž, M. and Padilla, R. and Qi, B. H. and Quadt, A. and Ran, K. L. and Ren, H. and Rizzi, C. and Rossi, E. and Sadrozinski, H. F. -W. and Saito, G. T. and Schumm, B. and Schwickardi, M. and Seiden, A. and Shan, L. Y. and Shi, L. S. and Shi, X. and Ferreira, A. Soares Canas and Sun, Y. J. and Tan, Y. H. and Tricoli, A. and Wan, G. Y. and Wilder, M. and Wu, K. W. and Wyatt, W. and Xiao, S. Y. and Yang, T. and Yang, Y. Z. and Yu, C. J. and Zhao, L. and Zhao, M. and Zhao, Y. and Zhao, Z. G. and Zheng, X. X. and Zhuang, X. A.},
abstractNote = {The High-Granularity Timing Detector is a detector proposed for the ATLAS Phase II upgrade. The detector, based on the Low-Gain Avalanche Detector (LGAD) technology, will cover the pseudo-rapidity region of 2.4 < |n| < 4.0 with two end caps on each side and a total area of 6.4 m2. The timing performance can be improved by implanting an internal gain layer that can produce signals with a fast rising edge. It significantly improves the signal-to-noise ratio. The required average timing resolution per track for a minimum ionizing particle is 30 ps at the start and 50 ps at the end of the HL-LHC operation. This is achieved with several layers of LGAD. The innermost region of the detector would accumulate a 1MeV neutron-equivalent fluence up to 2.5 1015 neq/cm2 including a safety factor of 1.5 before being replaced during the scheduled shutdowns. The addition of this new detector is expected to play an important role in the mitigation of high pile-ups at the HL-LHC. The layout and performance of the various versions of LGAD prototypes produced by Hamamatsu (HPK) have been studied by the ATLAS Collaboration. The breakdown voltages, depletion voltages, inter-pad gaps, collected charge as well as the time resolution have been measured and the production yield of large size sensors has been evaluated.},
doi = {10.1016/j.nima.2020.164379},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 980,
place = {United States},
year = {Mon Jul 27 00:00:00 EDT 2020},
month = {Mon Jul 27 00:00:00 EDT 2020}
}

Works referenced in this record:

Ultra-fast silicon detectors (UFSD)
journal, September 2016

  • Sadrozinski, H. F. -W.; Anker, A.; Chen, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 831
  • DOI: 10.1016/j.nima.2016.03.093

Development of a technology for the fabrication of Low-Gain Avalanche Diodes at BNL
journal, August 2019

  • Giacomini, Gabriele; Chen, Wei; Lanni, Francesco
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 934
  • DOI: 10.1016/j.nima.2019.04.073

Properties of HPK UFSD after neutron irradiation up to 6e15 n/cm 2
journal, October 2019

  • Galloway, Z.; Fadeyev, V.; Freeman, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 940
  • DOI: 10.1016/j.nima.2019.05.017

Comparison of 35 and 50 μ m thin HPK UFSD after neutron irradiation up to 6   1015 neq/cm2
journal, April 2019

  • Zhao, Y.; Cartiglia, N.; Estrada, E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 924
  • DOI: 10.1016/j.nima.2018.08.040

Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications
journal, November 2014

  • Pellegrini, G.; Fernández-Martínez, P.; Baselga, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 765
  • DOI: 10.1016/j.nima.2014.06.008

Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector
journal, June 2018