DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance in beam tests of irradiated Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector

Abstract

The High Granularity Timing Detector (HGTD) will be installed in the ATLAS detector to mitigate pile-up effects during the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC) at CERN. The design of the HGTD is based on the use of Low Gain Avalanche Detectors (LGADs), with an active thickness of 50 μm, that allow to measure with high-precision the time of arrival of particles. The HGTD will improve the particle-vertex assignment by measuring the track time with a resolution ranging from approximately 30 ps at the beginning of the HL-LHC operations to 50 ps at the end. Performances of several unirradiated, as well as neutron- and proton-irradiated, LGAD sensors from different vendors have been measured in beam test campaigns during the years 2018 and 2019 at CERN SPS and DESY. This paper presents the results obtained with data recorded by an oscilloscope synchronized with a beam telescope which provides particle position information within a resolution of a few μm. Collected charge, time resolution and hit efficiency are presented. In addition to these properties, the charge uniformity is also studied as a function of the position of the incident particle inside the sensor pad.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [1];  [2];  [6];  [6];  [9];  [10];  [4];  [2];  [2];  [11];  [12];  [7] more »;  [7];  [5];  [12];  [2];  [10];  [13];  [13];  [7];  [7];  [1];  [14];  [3];  [15];  [16];  [11];  [10];  [17];  [2];  [14];  [2];  [1];  [1];  [14];  [18];  [6];  [19];  [16];  [3];  [13] « less
  1. Infinis Irène Joliot Curie (IJCLab) (France)
  2. Conseil Européen pour la Recherche Nucléaire (CERN), Meyrin (Switzerland)
  3. Academia Sinica, Taipei City (Taiwan)
  4. Institute of High Energy Physics (IHEP), Beijing (China)
  5. Université Hassan II, Casablanca (Morocco)
  6. The Barcelona Institute of Science and Technology (BIST) (Spain)
  7. National Tsing Hua University (NTHU), Hsinchu (Taiwan)
  8. Academia Sinica, Taipei City (Taiwan); Université Mohammed V de Rabat (Morocco)
  9. The Barcelona Institute of Science and Technology (BIST) (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)
  10. Georg-August-Universität, Göttingen (Germany)
  11. Centro Nacional de Microelectrónica (CNM) (Spain)
  12. Jožef Stefan Institute (JSI), Ljubljana (Slovenia)
  13. University of Science and Technology of China (USTC), Anhui (China)
  14. Johannes Gutenberg Universität Mainz (Germany)
  15. University of California Santa Cruz, CA (United States)
  16. Sorbonne Université, Université de Paris (France)
  17. Ohio State University, Columbus, OH (United States)
  18. Université Mohammed V de Rabat (Morocco)
  19. The Ohio State University, Columbus, OH (United States)
Publication Date:
Research Org.:
Univ. of California, Santa Cruz, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); MINECO, Spanish Government; Marie Sklodowska- Curie
OSTI Identifier:
1979441
Grant/Contract Number:  
FG02-04ER41286; RTI2018-094906-B-C21; 754510; FPA2015-69260-C3-2-R; SEV-2012-0234
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Instrumentation
Additional Journal Information:
Journal Volume: 17; Journal Issue: 09; Journal ID: ISSN 1748-0221
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Instruments & Instrumentation; Si microstrip and pad detectors; Timing detectors

Citation Formats

Agapopoulou, C., Alderweireldt, S., Ali, S., Ayoub, M. K., Benchekroun, D., Castillo García, Lucia, Chan, Y. H., El Jarrari, H., Falou, A., Ferreira, A., Gkougkousis, E. L., Grieco, C., Grinstein, S., Große-Knetter, J., Guimarães da Costa, J., Guindon, S., Henriques Correia, A. M., Hidalgo, S., Howard, A., Hsu, P. J., Huang, Y. C., Khoulaki, Y., Kramberger, G., Kuwertz, E. S., Lange, J., Li, C., Li, Q., Lin, H. C., Lu, Y. J., Makovec, N., Masetti, L., Mazini, R., Mazza, S. M., Nikolic, I., Pellegrini, G., Quadt, A., Reynolds, B., Rizzi, C., Manzano, M. Robles, Rummler, A., Sacerdoti, S., Serin, L., Soengen, J., Tayalati, Y., Terzo, S., Tolley, E., Trincaz-Duvoid, S., Wang, S. M., and Yang, X. Performance in beam tests of irradiated Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector. United States: N. p., 2022. Web. doi:10.1088/1748-0221/17/09/p09026.
Agapopoulou, C., Alderweireldt, S., Ali, S., Ayoub, M. K., Benchekroun, D., Castillo García, Lucia, Chan, Y. H., El Jarrari, H., Falou, A., Ferreira, A., Gkougkousis, E. L., Grieco, C., Grinstein, S., Große-Knetter, J., Guimarães da Costa, J., Guindon, S., Henriques Correia, A. M., Hidalgo, S., Howard, A., Hsu, P. J., Huang, Y. C., Khoulaki, Y., Kramberger, G., Kuwertz, E. S., Lange, J., Li, C., Li, Q., Lin, H. C., Lu, Y. J., Makovec, N., Masetti, L., Mazini, R., Mazza, S. M., Nikolic, I., Pellegrini, G., Quadt, A., Reynolds, B., Rizzi, C., Manzano, M. Robles, Rummler, A., Sacerdoti, S., Serin, L., Soengen, J., Tayalati, Y., Terzo, S., Tolley, E., Trincaz-Duvoid, S., Wang, S. M., & Yang, X. Performance in beam tests of irradiated Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector. United States. https://doi.org/10.1088/1748-0221/17/09/p09026
Agapopoulou, C., Alderweireldt, S., Ali, S., Ayoub, M. K., Benchekroun, D., Castillo García, Lucia, Chan, Y. H., El Jarrari, H., Falou, A., Ferreira, A., Gkougkousis, E. L., Grieco, C., Grinstein, S., Große-Knetter, J., Guimarães da Costa, J., Guindon, S., Henriques Correia, A. M., Hidalgo, S., Howard, A., Hsu, P. J., Huang, Y. C., Khoulaki, Y., Kramberger, G., Kuwertz, E. S., Lange, J., Li, C., Li, Q., Lin, H. C., Lu, Y. J., Makovec, N., Masetti, L., Mazini, R., Mazza, S. M., Nikolic, I., Pellegrini, G., Quadt, A., Reynolds, B., Rizzi, C., Manzano, M. Robles, Rummler, A., Sacerdoti, S., Serin, L., Soengen, J., Tayalati, Y., Terzo, S., Tolley, E., Trincaz-Duvoid, S., Wang, S. M., and Yang, X. Wed . "Performance in beam tests of irradiated Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector". United States. https://doi.org/10.1088/1748-0221/17/09/p09026. https://www.osti.gov/servlets/purl/1979441.
@article{osti_1979441,
title = {Performance in beam tests of irradiated Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector},
author = {Agapopoulou, C. and Alderweireldt, S. and Ali, S. and Ayoub, M. K. and Benchekroun, D. and Castillo García, Lucia and Chan, Y. H. and El Jarrari, H. and Falou, A. and Ferreira, A. and Gkougkousis, E. L. and Grieco, C. and Grinstein, S. and Große-Knetter, J. and Guimarães da Costa, J. and Guindon, S. and Henriques Correia, A. M. and Hidalgo, S. and Howard, A. and Hsu, P. J. and Huang, Y. C. and Khoulaki, Y. and Kramberger, G. and Kuwertz, E. S. and Lange, J. and Li, C. and Li, Q. and Lin, H. C. and Lu, Y. J. and Makovec, N. and Masetti, L. and Mazini, R. and Mazza, S. M. and Nikolic, I. and Pellegrini, G. and Quadt, A. and Reynolds, B. and Rizzi, C. and Manzano, M. Robles and Rummler, A. and Sacerdoti, S. and Serin, L. and Soengen, J. and Tayalati, Y. and Terzo, S. and Tolley, E. and Trincaz-Duvoid, S. and Wang, S. M. and Yang, X.},
abstractNote = {The High Granularity Timing Detector (HGTD) will be installed in the ATLAS detector to mitigate pile-up effects during the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC) at CERN. The design of the HGTD is based on the use of Low Gain Avalanche Detectors (LGADs), with an active thickness of 50 μm, that allow to measure with high-precision the time of arrival of particles. The HGTD will improve the particle-vertex assignment by measuring the track time with a resolution ranging from approximately 30 ps at the beginning of the HL-LHC operations to 50 ps at the end. Performances of several unirradiated, as well as neutron- and proton-irradiated, LGAD sensors from different vendors have been measured in beam test campaigns during the years 2018 and 2019 at CERN SPS and DESY. This paper presents the results obtained with data recorded by an oscilloscope synchronized with a beam telescope which provides particle position information within a resolution of a few μm. Collected charge, time resolution and hit efficiency are presented. In addition to these properties, the charge uniformity is also studied as a function of the position of the incident particle inside the sensor pad.},
doi = {10.1088/1748-0221/17/09/p09026},
journal = {Journal of Instrumentation},
number = 09,
volume = 17,
place = {United States},
year = {Wed Sep 21 00:00:00 EDT 2022},
month = {Wed Sep 21 00:00:00 EDT 2022}
}

Works referenced in this record:

Technical Design Report for the ATLAS Inner Tracker Pixel Detector
null, January 2017


Performance of a Front End prototype ASIC for picosecond precision time measurements with LGAD sensors
journal, July 2020


Performance of a low gain avalanche detector in a medical linac and characterisation of the beam profile
journal, June 2021


Geiger-mode avalanche photodiodes, history, properties and problems
journal, November 2006

  • Renker, D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 567, Issue 1
  • DOI: 10.1016/j.nima.2006.05.060

Characterization of Irradiated Boron, Carbon-Enriched and Gallium Si-on-Si Wafer Low Gain Avalanche Detectors
journal, December 2021

  • Castillo García, Lucía; Gkougkousis, Evangelos Leonidas; Grieco, Chiara
  • Instruments, Vol. 6, Issue 1
  • DOI: 10.3390/instruments6010002

Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector
journal, June 2018


Performance of the EUDET-type beam telescopes
journal, October 2016


EUDAQ—a data acquisition software framework for common beam telescopes
journal, January 2020


Properties of HPK UFSD after neutron irradiation up to 6e15 n/cm 2
journal, October 2019

  • Galloway, Z.; Fadeyev, V.; Freeman, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 940
  • DOI: 10.1016/j.nima.2019.05.017

The ATLAS Experiment at the CERN Large Hadron Collider
journal, August 2008


Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications
journal, November 2014

  • Pellegrini, G.; Fernández-Martínez, P.; Baselga, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 765
  • DOI: 10.1016/j.nima.2014.06.008

Gain and time resolution of 45 μm thin Low Gain Avalanche Detectors before and after irradiation up to a fluence of 10 15 n eq /cm 2
journal, May 2017


The DESY II test beam facility
journal, April 2019

  • Diener, R.; Dreyling-Eschweiler, J.; Ehrlichmann, H.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 922
  • DOI: 10.1016/j.nima.2018.11.133

Radiation hardness of thin Low Gain Avalanche Detectors
journal, May 2018

  • Kramberger, G.; Carulla, M.; Cavallaro, E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 891
  • DOI: 10.1016/j.nima.2018.02.018

Development of a versatile and modular test system for ATLAS hybrid pixel detectors
journal, September 2011

  • Backhaus, M.; Barbero, M.; Gonella, L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 650, Issue 1
  • DOI: 10.1016/j.nima.2010.12.087

“ALTIROC0, a 20 pico-second time resolution ASIC for the ATLAS High Granularity Timing Detector (HGTD)”
conference, March 2018

  • De La Taille, Christophe; Callier, Stéphane; Conforti Di Lorenzo, Selma
  • Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP-17)
  • DOI: 10.22323/1.313.0006