DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data

Abstract

The potential importance of Aitken mode particles (diameters ~ 25–80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (>80° N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (< 10–20 cm–3), even when the particles have low hygroscopicity (hygroscopicity parameter – κ=0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [3];  [1]; ORCiD logo [1]
  1. Stockholm Univ. (Sweden); Bolin Centre for Climate Research, Stockholm (Sweden)
  2. Univ. of California, Davis, CA (United States)
  3. Stockholm Univ. (Sweden); Leibniz Inst. for Tropospheric Research (ITR), Leipzig (Germany)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); Swedish Research Council (SRC)
Contributing Org.:
PNNL, BNL, ANL, ORNL
OSTI Identifier:
1772900
Grant/Contract Number:  
SC0019073; 2016-07213
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 21; Journal Issue: 5; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Bulatovic, Ines, Igel, Adele L., Leck, Caroline, Heintzenberg, Jost, Riipinen, Ilona, and Ekman, Annica L. The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data. United States: N. p., 2021. Web. doi:10.5194/acp-21-3871-2021.
Bulatovic, Ines, Igel, Adele L., Leck, Caroline, Heintzenberg, Jost, Riipinen, Ilona, & Ekman, Annica L. The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data. United States. https://doi.org/10.5194/acp-21-3871-2021
Bulatovic, Ines, Igel, Adele L., Leck, Caroline, Heintzenberg, Jost, Riipinen, Ilona, and Ekman, Annica L. Mon . "The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data". United States. https://doi.org/10.5194/acp-21-3871-2021. https://www.osti.gov/servlets/purl/1772900.
@article{osti_1772900,
title = {The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic – a simulation study supported by observational data},
author = {Bulatovic, Ines and Igel, Adele L. and Leck, Caroline and Heintzenberg, Jost and Riipinen, Ilona and Ekman, Annica L.},
abstractNote = {The potential importance of Aitken mode particles (diameters ~ 25–80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (>80° N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (< 10–20 cm–3), even when the particles have low hygroscopicity (hygroscopicity parameter – κ=0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic.},
doi = {10.5194/acp-21-3871-2021},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 5,
volume = 21,
place = {United States},
year = {Mon Mar 15 00:00:00 EDT 2021},
month = {Mon Mar 15 00:00:00 EDT 2021}
}

Works referenced in this record:

RAMS 2001: Current status and future directions
journal, January 2003

  • Cotton, W. R.; Pielke Sr., R. A.; Walko, R. L.
  • Meteorology and Atmospheric Physics, Vol. 82, Issue 1-4
  • DOI: 10.1007/s00703-001-0584-9

Prediction of cloud droplet number in a general circulation model
journal, September 1997

  • Ghan, Steven J.; Leung, L. Ruby; Easter, Richard C.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D18
  • DOI: 10.1029/97JD01810

A modeling study of the effect of drizzle on cloud optical depth and susceptibility
journal, June 1997

  • Feingold, Graham; Boers, Reinout; Stevens, Bjorn
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D12
  • DOI: 10.1029/97JD00963

Importance of aerosol composition and mixing state for cloud droplet activation over the Arctic pack ice in summer
journal, January 2015


The summer aerosol in the central Arctic 1991–2008: did it change or not?
journal, January 2012


Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions
journal, October 2016


The Relationships Between Cloud Top Radiative Cooling Rates, Surface Latent Heat Fluxes, and Cloud-Base Heights in Marine Stratocumulus
journal, October 2018

  • Zheng, Youtong; Rosenfeld, Daniel; Li, Zhanqing
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 20
  • DOI: 10.1029/2018JD028579

Cloud-active particles over the central Arctic Ocean
journal, December 2001

  • Bigg, E. Keith; Leck, Caroline
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/1999JD901152

Polar amplification of climate change in coupled models
journal, September 2003


Source and evolution of the marine aerosol-A new perspective: MARINE AEROSOL-A NEW PERSPECTIVE
journal, October 2005

  • Leck, Caroline; Bigg, E. Keith
  • Geophysical Research Letters, Vol. 32, Issue 19
  • DOI: 10.1029/2005GL023651

Microphysical explanation of the RH‐dependent water affinity of biogenic organic aerosol and its importance for climate
journal, May 2017

  • Rastak, N.; Pajunoja, A.; Acosta Navarro, J. C.
  • Geophysical Research Letters, Vol. 44, Issue 10
  • DOI: 10.1002/2017GL073056

Can marine micro-organisms influence melting of the Arctic pack ice?
journal, January 2004

  • Leck, Caroline; Tjernström, Michael; Matrai, Patrica
  • Eos, Transactions American Geophysical Union, Vol. 85, Issue 3
  • DOI: 10.1029/2004EO030001

Growth of nucleation mode particles in the summertime Arctic: a case study
journal, January 2016

  • Willis, Megan D.; Burkart, Julia; Thomas, Jennie L.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 12
  • DOI: 10.5194/acp-16-7663-2016

Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus
journal, January 2014


Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect
journal, November 2016

  • Croft, B.; Wentworth, G. R.; Martin, R. V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13444

Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA
journal, February 2006

  • Shupe, Matthew D.; Matrosov, Sergey Y.; Uttal, Taneil
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 2
  • DOI: 10.1175/JAS3659.1

Resilience of persistent Arctic mixed-phase clouds
journal, December 2011

  • Morrison, Hugh; de Boer, Gijs; Feingold, Graham
  • Nature Geoscience, Vol. 5, Issue 1
  • DOI: 10.1038/ngeo1332

Large‐eddy simulation of three mixed‐phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation
journal, August 2015

  • Savre, J.; Ekman, A. M. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 15
  • DOI: 10.1002/2014JD023006

Processes and impacts of Arctic amplification: A research synthesis
journal, May 2011


Vertical Motions in Arctic Mixed-Phase Stratiform Clouds
journal, April 2008

  • Shupe, Matthew D.; Kollias, Pavlos; Persson, P. Ola G.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 4
  • DOI: 10.1175/2007JAS2479.1

The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design
journal, January 2014

  • Tjernström, M.; Leck, C.; Birch, C. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 6
  • DOI: 10.5194/acp-14-2823-2014

Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions
journal, March 2014

  • Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander
  • Journal of Advances in Modeling Earth Systems, Vol. 6, Issue 1
  • DOI: 10.1002/2013MS000282

A double-moment parameterization for simulating autoconversion, accretion and selfcollection
journal, October 2001


Response of Arctic mixed-phase clouds to aerosol perturbations under different surface forcings
journal, January 2019

  • Eirund, Gesa K.; Possner, Anna; Lohmann, Ulrike
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 15
  • DOI: 10.5194/acp-19-9847-2019

New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
journal, January 2019

  • Kecorius, Simonas; Vogl, Teresa; Paasonen, Pauli
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 22
  • DOI: 10.5194/acp-19-14339-2019

‘Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project’
journal, November 2005

  • Tjernström, Michael; Žagar, Mark; Svensson, Gunilla
  • Boundary-Layer Meteorology, Vol. 117, Issue 2
  • DOI: 10.1007/s10546-004-7954-z

Developments in the CSU-RAMS Aerosol Model: Emissions, Nucleation, Regeneration, Deposition, and Radiation
journal, December 2013

  • Saleeby, Stephen M.; van den Heever, Susan C.
  • Journal of Applied Meteorology and Climatology, Vol. 52, Issue 12
  • DOI: 10.1175/JAMC-D-12-0312.1

Pan-Arctic aerosol number size distributions: seasonality and transport patterns
journal, January 2017

  • Freud, Eyal; Krejci, Radovan; Tunved, Peter
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 13
  • DOI: 10.5194/acp-17-8101-2017

Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer
journal, January 2005


A sensitivity study of Arctic air-mass transformation using Large Eddy Simulation
dataset, January 2019


A Sensitivity Study of Arctic Air‐Mass Transformation Using Large Eddy Simulation
journal, March 2020

  • Dimitrelos, Antonios; Ekman, Annica M. L.; Caballero, Rodrigo
  • Journal of Geophysical Research: Atmospheres, Vol. 125, Issue 6
  • DOI: 10.1029/2019JD031738

A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing
journal, November 2010

  • Sedlar, Joseph; Tjernström, Michael; Mauritsen, Thorsten
  • Climate Dynamics, Vol. 37, Issue 7-8
  • DOI: 10.1007/s00382-010-0937-5

Warm-air advection, air mass transformation and fog causes rapid ice melt: WARM-AIR ADVECTION, FOG AND ICE MELT
journal, July 2015

  • Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.
  • Geophysical Research Letters, Vol. 42, Issue 13
  • DOI: 10.1002/2015GL064373

Surface tension prevails over solute effect in organic-influenced cloud droplet activation
journal, June 2017

  • Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari
  • Nature, Vol. 546, Issue 7660
  • DOI: 10.1038/nature22806

Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion
journal, January 2011

  • Solomon, A.; Shupe, M. D.; Persson, P. O. G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 19
  • DOI: 10.5194/acp-11-10127-2011

The relative impact of cloud condensation nuclei and ice nucleating particle concentrations on phase partitioning in Arctic mixed-phase stratocumulus clouds
journal, January 2018

  • Solomon, Amy; de Boer, Gijs; Creamean, Jessie M.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 23
  • DOI: 10.5194/acp-18-17047-2018

New RAMS cloud microphysics parameterization. Part II: The two-moment scheme
journal, August 1997


The Boundary Layer Response to Recent Arctic Sea Ice Loss and Implications for High-Latitude Climate Feedbacks
journal, January 2011


Influence of parameterized ice habit on simulated mixed phase Arctic clouds
journal, January 2010

  • Avramov, Alexander; Harrington, Jerry Y.
  • Journal of Geophysical Research, Vol. 115, Issue D3
  • DOI: 10.1029/2009JD012108

Acceleration by aerosol of a radiative-thermodynamic cloud feedback influencing Arctic surface warming
journal, January 2009

  • Garrett, Timothy J.; Maestas, Melissa M.; Krueger, Steven K.
  • Geophysical Research Letters, Vol. 36, Issue 19
  • DOI: 10.1029/2009GL040195

Cloud influence on and response to seasonal Arctic sea ice loss
journal, January 2009

  • Kay, Jennifer E.; Gettelman, Andrew
  • Journal of Geophysical Research, Vol. 114, Issue D18
  • DOI: 10.1029/2009JD011773

Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS)
journal, January 2012

  • Tjernström, M.; Birch, C. E.; Brooks, I. M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 15
  • DOI: 10.5194/acp-12-6863-2012

Modeling Supersaturation and Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics
journal, March 2008

  • Morrison, Hugh; Grabowski, Wojciech W.
  • Journal of the Atmospheric Sciences, Vol. 65, Issue 3
  • DOI: 10.1175/2007JAS2374.1

The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources
journal, February 2014

  • Solomon, Amy; Shupe, Matthew D.; Persson, Ola
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 2
  • DOI: 10.1175/JAS-D-13-0179.1

Sudden changes in arctic atmospheric aerosol concentrations during summer and autumn
journal, January 1996

  • Bigg, Keith E.; Leck, Caroline; Nilsson, Douglas E.
  • Tellus B: Chemical and Physical Meteorology, Vol. 48, Issue 2
  • DOI: 10.3402/tellusb.v48i2.15890

Potential source regions and processes of aerosol in the summer Arctic
journal, January 2015

  • Heintzenberg, J.; Leck, C.; Tunved, P.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 11
  • DOI: 10.5194/acp-15-6487-2015

A single parameter representation of hygroscopic growth and cloud condensation nucleus activity
journal, January 2007

  • Petters, M. D.; Kreidenweis, S. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1961-2007

Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-96): An overview of scientific goals, experimental approach, and instruments
journal, December 2001

  • Leck, Caroline; Nilsson, E. Douglas; Bigg, E. Keith
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2000JD900461

Cloud condensation nuclei closure study on summer arctic aerosol
journal, January 2011

  • Martin, M.; Chang, R. Y. -W.; Sierau, B.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 22
  • DOI: 10.5194/acp-11-11335-2011

A one-dimensional simulation of the stratocumulus-capped mixed layer
journal, March 1983

  • Chen, Chaing; Cotton, William R.
  • Boundary-Layer Meteorology, Vol. 25, Issue 3
  • DOI: 10.1007/BF00119541

Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer
journal, February 1986

  • Hoppel, W. A.; Frick, G. M.; Larson, R. E.
  • Geophysical Research Letters, Vol. 13, Issue 2
  • DOI: 10.1029/GL013i002p00125

Cloud and boundary layer interactions over the Arctic sea ice in late summer
journal, January 2013

  • Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 18
  • DOI: 10.5194/acp-13-9379-2013

Polar amplification dominated by local forcing and feedbacks
journal, November 2018

  • Stuecker, Malte F.; Bitz, Cecilia M.; Armour, Kyle C.
  • Nature Climate Change, Vol. 8, Issue 12
  • DOI: 10.1038/s41558-018-0339-y

Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus
journal, June 2005

  • Stevens, Bjorn; Moeng, Chin-Hoh; Ackerman, Andrew S.
  • Monthly Weather Review, Vol. 133, Issue 6
  • DOI: 10.1175/MWR2930.1

An Arctic CCN-limited cloud-aerosol regime
journal, January 2011

  • Mauritsen, T.; Sedlar, J.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 1
  • DOI: 10.5194/acp-11-165-2011

A model intercomparison of CCN-limited tenuous clouds in the high Arctic
journal, January 2018

  • Stevens, Robin G.; Loewe, Katharina; Dearden, Christopher
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 15
  • DOI: 10.5194/acp-18-11041-2018

Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn
journal, January 1996

  • Wiedensohler, Alfred; Covert, David S.; Swietlicki, Erik
  • Tellus B: Chemical and Physical Meteorology, Vol. 48, Issue 2
  • DOI: 10.3402/tellusb.v48i2.15887

Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn
journal, January 1996

  • Covert, David S.; Wiedensohler, Alfred; Aalto, Pasi
  • Tellus B: Chemical and Physical Meteorology, Vol. 48, Issue 2
  • DOI: 10.3402/tellusb.v48i2.15886

An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA
journal, January 2002


Modelling atmospheric structure, cloud and their response to CCN in the central Arctic: ASCOS case studies
journal, January 2012

  • Birch, C. E.; Brooks, I. M.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 7
  • DOI: 10.5194/acp-12-3419-2012

Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud
journal, January 2011

  • Ovchinnikov, Mikhail; Korolev, Alexei; Fan, Jiwen
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JD015888

Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS)
journal, January 2017

  • Loewe, Katharina; Ekman, Annica M. L.; Paukert, Marco
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 11
  • DOI: 10.5194/acp-17-6693-2017

Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model
journal, March 2000


Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed‐Phase Clouds
journal, September 2020

  • Christiansen, Sigurd; Ickes, Luisa; Bulatovic, Ines
  • Journal of Geophysical Research: Atmospheres, Vol. 125, Issue 19
  • DOI: 10.1029/2020JD032808

The free troposphere as a potential source of arctic boundary layer aerosol particles: Free Troposphere and Boundary Layer Arctic Aerosol
journal, July 2017

  • Igel, Adele L.; Ekman, Annica M. L.; Leck, Caroline
  • Geophysical Research Letters, Vol. 44, Issue 13
  • DOI: 10.1002/2017GL073808

A new approach to estimate supersaturation fluctuations in stratocumulus cloud using ground-based remote-sensing measurements
journal, January 2019

  • Yang, Fan; McGraw, Robert; Luke, Edward P.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 11
  • DOI: 10.5194/amt-12-5817-2019

A sensitivity study of Arctic air-mass transformation using Large Eddy Simulation
dataset, January 2019


CCN and Vertical Velocity Influences on Droplet Concentrations and Supersaturations in Clean and Polluted Stratus Clouds
journal, January 2014

  • Hudson, James G.; Noble, Stephen
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 1
  • DOI: 10.1175/JAS-D-13-086.1

Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord
journal, January 2016

  • Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 17
  • DOI: 10.5194/acp-16-11319-2016

The nucleus in and the growth of hygroscopic droplets
journal, January 1936


Marine nanogels as a source of atmospheric nanoparticles in the high Arctic: NANOGELS IN THE HIGH ARCTIC
journal, July 2013

  • Karl, Matthias; Leck, Caroline; Coz, Esther
  • Geophysical Research Letters, Vol. 40, Issue 14
  • DOI: 10.1002/grl.50661

The impact of secondary ice production on Arctic stratocumulus
journal, January 2020

  • Sotiropoulou, Georgia; Sullivan, Sylvia; Savre, Julien
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 3
  • DOI: 10.5194/acp-20-1301-2020

Explicit Simulation of Aerosol Physics in a Cloud-Resolving Model: Aerosol Transport and Processing in the Free Troposphere
journal, February 2006

  • Ekman, Annica M. L.; Wang, Chien; Ström, Johan
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 2
  • DOI: 10.1175/JAS3645.1

The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study
journal, September 2017

  • Brooks, Ian M.; Tjernström, Michael; Persson, P. Ola G.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 18
  • DOI: 10.1002/2017JD027234

Is There a Diurnal Cycle in the Summer Cloud-Capped Arctic Boundary Layer?
journal, November 2007


Technical note: Introduction to MIMICA, a large-eddy simulation solver for cloudy planetary boundary layers
journal, July 2014

  • Savre, J.; Ekman, A. M. L.; Svensson, G.
  • Journal of Advances in Modeling Earth Systems, Vol. 6, Issue 3
  • DOI: 10.1002/2013MS000292

Overview of the atmospheric research program during the International Arctic Ocean Expedition of 1991 (IAOE-91) and its scientific results
journal, January 1996