DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A disordered rock salt anode for fast-charging lithium-ion batteries

Abstract

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. In this paper we report that disordered rock salt Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2). Further, disordered rock salt Li3V2O5 can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with lowmore » energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [6];  [6]; ORCiD logo [7]; ORCiD logo [1];  [1];  [1];  [1];  [8];  [9]; ORCiD logo [3];  [10];  [2] more »; ORCiD logo [6]; ORCiD logo [6]; ORCiD logo [6]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1] « less
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Univ. of California, Irvine, CA (United States)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
  7. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  8. Del Norte High School, San Diego, CA (United States)
  9. Canyon Crest Academy, San Diego, CA (United States)
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; Alberta organization Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1659690
Alternate Identifier(s):
OSTI ID: 1684686; OSTI ID: 1716761; OSTI ID: 1765568
Report Number(s):
BNL-216352-2020-JAAM; BNL-220605-2020-JAAM
Journal ID: ISSN 0028-0836
Grant/Contract Number:  
SC0012704; SC0012118; 1640899; ACI-1548562; AC02-05CH11231; AC02-06CH11357; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 585; Journal Issue: 7823; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; lithium-ion battery

Citation Formats

Liu, Haodong, Zhu, Zhuoying, Yan, Qizhang, Yu, Sicen, He, Xin, Chen, Yan, Zhang, Rui, Ma, Lu, Liu, Tongchao, Li, Matthew, Lin, Ruoqian, Chen, Yiming, Li, Yejing, Xing, Xing, Choi, Yoonjung, Gao, Lucy, Cho, Helen Sung-yun, An, Ke, Feng, Jun, Kostecki, Robert, Amine, Khalil, Wu, Tianpin, Lu, Jun, Xin, Huolin L., On, Shyue Ping, and Liu, Ping. A disordered rock salt anode for fast-charging lithium-ion batteries. United States: N. p., 2020. Web. doi:10.1038/s41586-020-2637-6.
Liu, Haodong, Zhu, Zhuoying, Yan, Qizhang, Yu, Sicen, He, Xin, Chen, Yan, Zhang, Rui, Ma, Lu, Liu, Tongchao, Li, Matthew, Lin, Ruoqian, Chen, Yiming, Li, Yejing, Xing, Xing, Choi, Yoonjung, Gao, Lucy, Cho, Helen Sung-yun, An, Ke, Feng, Jun, Kostecki, Robert, Amine, Khalil, Wu, Tianpin, Lu, Jun, Xin, Huolin L., On, Shyue Ping, & Liu, Ping. A disordered rock salt anode for fast-charging lithium-ion batteries. United States. https://doi.org/10.1038/s41586-020-2637-6
Liu, Haodong, Zhu, Zhuoying, Yan, Qizhang, Yu, Sicen, He, Xin, Chen, Yan, Zhang, Rui, Ma, Lu, Liu, Tongchao, Li, Matthew, Lin, Ruoqian, Chen, Yiming, Li, Yejing, Xing, Xing, Choi, Yoonjung, Gao, Lucy, Cho, Helen Sung-yun, An, Ke, Feng, Jun, Kostecki, Robert, Amine, Khalil, Wu, Tianpin, Lu, Jun, Xin, Huolin L., On, Shyue Ping, and Liu, Ping. Wed . "A disordered rock salt anode for fast-charging lithium-ion batteries". United States. https://doi.org/10.1038/s41586-020-2637-6. https://www.osti.gov/servlets/purl/1659690.
@article{osti_1659690,
title = {A disordered rock salt anode for fast-charging lithium-ion batteries},
author = {Liu, Haodong and Zhu, Zhuoying and Yan, Qizhang and Yu, Sicen and He, Xin and Chen, Yan and Zhang, Rui and Ma, Lu and Liu, Tongchao and Li, Matthew and Lin, Ruoqian and Chen, Yiming and Li, Yejing and Xing, Xing and Choi, Yoonjung and Gao, Lucy and Cho, Helen Sung-yun and An, Ke and Feng, Jun and Kostecki, Robert and Amine, Khalil and Wu, Tianpin and Lu, Jun and Xin, Huolin L. and On, Shyue Ping and Liu, Ping},
abstractNote = {Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. In this paper we report that disordered rock salt Li3+xV2O5 can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.6 volts versus a Li/Li+ reference electrode. The increased potential compared to graphite reduces the likelihood of lithium metal plating if proper charging controls are used, alleviating a major safety concern (short-circuiting related to Li dendrite growth). In addition, a lithium-ion battery with a disordered rock salt Li3V2O5 anode yields a cell voltage much higher than does a battery using a commercial fast-charging lithium titanate anode or other intercalation anode candidates (Li3VO4 and LiV0.5Ti0.5S2). Further, disordered rock salt Li3V2O5 can perform over 1,000 charge–discharge cycles with negligible capacity decay and exhibits exceptional rate capability, delivering over 40 per cent of its capacity in 20 seconds. We attribute the low voltage and high rate capability of disordered rock salt Li3V2O5 to a redistributive lithium intercalation mechanism with low energy barriers revealed via ab initio calculations. This low-potential, high-rate intercalation reaction can be used to identify other metal oxide anodes for fast-charging, long-life lithium-ion batteries.},
doi = {10.1038/s41586-020-2637-6},
journal = {Nature (London)},
number = 7823,
volume = 585,
place = {United States},
year = {Wed Sep 02 00:00:00 EDT 2020},
month = {Wed Sep 02 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 208 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lithium Insertion into Li 2 MoO 4 : Reversible Formation of (Li 3 Mo)O 4 with a Disordered Rock-Salt Structure
journal, June 2015


Mechanisms for Lithium Insertion in Carbonaceous Materials
journal, October 1995


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Automated generation and ensemble-learned matching of X-ray absorption spectra
journal, March 2018


Electrochemical extraction of lithium from LiMn2O4
journal, February 1984


Phase stability and its impact on the electrochemical performance of VOPO 4 and LiVOPO 4
journal, January 2014

  • Ling, Chen; Zhang, Ruigang; Mizuno, Fuminori
  • Journal of Materials Chemistry A, Vol. 2, Issue 31
  • DOI: 10.1039/C4TA01708K

Projector augmented-wave method
journal, December 1994


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Statistical Analysis of Coordination Environments in Oxides
journal, September 2017


EXPGUI , a graphical user interface for GSAS
journal, April 2001


The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation
journal, August 1994


Formation of the ω-type phase by lithium intercalation in (Mo, V) oxides deriving from V2O5
journal, April 1995


First In Situ Lattice Strains Measurements Under Load at VULCAN
journal, October 2010

  • An, Ke; Skorpenske, Harley D.; Stoica, Alexandru D.
  • Metallurgical and Materials Transactions A, Vol. 42, Issue 1
  • DOI: 10.1007/s11661-010-0495-9

A Comparative In Situ X-Ray Absorption Spectroscopy Study of Nanophase V[sub 2]O[sub 5] Aerogel and Ambigel Cathodes
journal, January 2003

  • Mansour, A. N.; Smith, P. H.; Baker, W. M.
  • Journal of The Electrochemical Society, Vol. 150, Issue 4
  • DOI: 10.1149/1.1554911

Electrochemical Synthesis of a Lithium-Rich Rock-Salt-Type Oxide Li 5 W 2 O 7 with Reversible Deintercalation Properties
journal, December 2013

  • Pralong, Valerie; Venkatesh, Gopal; Malo, Sylvie
  • Inorganic Chemistry, Vol. 53, Issue 1
  • DOI: 10.1021/ic402543e

Cation-Disordered Li 3 VO 4 : Reversible Li Insertion/Deinsertion Mechanism for Quasi Li-Rich Layered Li 1+ x [V 1/2 Li 1/2 ]O 2 ( x = 0–1)
journal, July 2018


Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode
journal, March 2016

  • Clark, Steve J.; Wang, Da; Armstrong, A. Robert
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10898

In Situ X-Ray Absorption Spectroscopy Characterization of V2O5 Xerogel Cathodes upon Lithium Intercalation
journal, January 1999

  • Giorgetti, Marco; Passerini, Stefano; Smyrl, William H.
  • Journal of The Electrochemical Society, Vol. 146, Issue 7, p. 2387-2392
  • DOI: 10.1149/1.1391946

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Structural stability of LiMn2O4 electrodes for lithium batteries
journal, September 1997


Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


XPS and Raman spectroscopic characterization of LiMn2O4 spinels
journal, January 2005

  • Ramana, C. V.; Massot, M.; Julien, C. M.
  • Surface and Interface Analysis, Vol. 37, Issue 4
  • DOI: 10.1002/sia.2022

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Theoretical Study of Li Migration in Lithium–Graphite Intercalation Compounds with Dispersion-Corrected DFT Methods
journal, January 2014

  • Thinius, Sascha; Islam, Mazharul M.; Heitjans, Paul
  • The Journal of Physical Chemistry C, Vol. 118, Issue 5
  • DOI: 10.1021/jp408945j

Sustainability and in situ monitoring in battery development
journal, December 2016

  • Grey, C. P.; Tarascon, J. M.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4777

Phase diagram of Li x C 6
journal, November 1991


Narrowing the Gap between Theoretical and Practical Capacities in Li-Ion Layered Oxide Cathode Materials
journal, July 2017

  • Radin, Maxwell D.; Hy, Sunny; Sina, Mahsa
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201602888

Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12 Ni 3/12 Mn 7/12 ]O 2
journal, October 2014

  • Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am504701s

Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


Computational Design and Preparation of Cation-Disordered Oxides for High-Energy-Density Li-Ion Batteries
journal, May 2016

  • Urban, Alexander; Matts, Ian; Abdellahi, Aziz
  • Advanced Energy Materials, Vol. 6, Issue 15
  • DOI: 10.1002/aenm.201600488

New Methodological Approach for the Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation:  Application to the Speciation of Vanadium in Oxide Phases from Steel Slag
journal, May 2007

  • Chaurand, Perrine; Rose, Jérôme; Briois, Valérie
  • The Journal of Physical Chemistry B, Vol. 111, Issue 19
  • DOI: 10.1021/jp063186i

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Extending the limits of powder diffraction analysis: Diffraction parameter space, occupancy defects, and atomic form factors
journal, September 2018

  • Yin, Liang; Mattei, Gerard S.; Li, Zhou
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5044555

Li 3 VO 4 : A Promising Insertion Anode Material for Lithium-Ion Batteries
journal, December 2012

  • Li, Huiqiao; Liu, Xizheng; Zhai, Tianyou
  • Advanced Energy Materials, Vol. 3, Issue 4
  • DOI: 10.1002/aenm.201200833

Parameter-free calculations of X-ray spectra with FEFF9
journal, January 2010

  • Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b926434e

Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Chemical and Electrochemical Li-Insertion into the Li 4 Ti 5 O 12 Spinel
journal, December 2004

  • Aldon, L.; Kubiak, P.; Womes, M.
  • Chemistry of Materials, Vol. 16, Issue 26
  • DOI: 10.1021/cm0488837

High‐Voltage Charging‐Induced Strain, Heterogeneity, and Micro‐Cracks in Secondary Particles of a Nickel‐Rich Layered Cathode Material
journal, March 2019

  • Mao, Yuwei; Wang, Xuelong; Xia, Sihao
  • Advanced Functional Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adfm.201900247

The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance
journal, September 2019


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Approaching the limits of cationic and anionic electrochemical activity with the Li-rich layered rocksalt Li3IrO4
journal, December 2017


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013