

ELECTROCHEMICAL STUDIES OF Mg-DOPED $\text{Li}_4\text{Ti}_5\text{O}_{12}$ ANODES

by

C. H. Chen, J. Vaughey, A. N. Jansen,
A. J. Kahaian and M. M. Thackeray
Electrochemical Technology Program
Chemical Technology Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439

RECEIVED
OCT 12 1999
OSTI

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

This work was performed under the auspices of the Office of Basic Energy Sciences; Division of Chemical Sciences, U.S. Department of Energy, under contract number W-31-109-ENG-38.

July 1999

For presentation at the 196th Joint International of the Electrochemical Society, Honolulu, Hawaii, October 17-22, 1999

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Electrochemical Studies of Mg-doped $\text{Li}_4\text{Ti}_5\text{O}_{12}$ Anodes

C. H. Chen, J. Vaughey, A. N. Jansen, A. J. Kahaian, and M.M. Thackeray
Electrochemical Technology Program
Chemical Technology Division
Argonne National Laboratory
Argonne, IL 60439

Commercial lithium-ion batteries use carbon as the material of choice for the anode. However, because lithiated carbon has a voltage very close to the potential of metallic lithium, there are concerns about the safety of fully-charged carbon electrodes. The safety issue can be addressed by using a material that intercalates lithium at a higher voltage. A promising material is the lithium-titanium-oxide spinel material $\text{Li}_4\text{Ti}_5\text{O}_{12}$ (Fig.1) which can accommodate 3 Li^+ ions per formula unit (corresponding to 175 mAh/g) in a two-phase reaction at approximately 1.5 V versus lithium (1,2). One of the drawbacks of this system is that the end-member $\text{Li}_4\text{Ti}_5\text{O}_{12}$ is electronically insulating, which limits electron transfer at the electrode surface. By doping this material with magnesium, $\text{Li}_{4-x}\text{Mg}_x\text{Ti}_5\text{O}_{12}$, we introduced mixed-valent $\text{Ti}^{4+}/\text{Ti}^{3+}$ into the stoichiometric spinel structure and thereby increased the electronic conductivity by several orders of magnitude without sacrificing electrochemical performance (3). In this presentation we will provide data on the extent of the solid solution in $\text{Li}_{4-x}\text{Mg}_x\text{Ti}_5\text{O}_{12}$, the variation of electronic conductivity as a function of dopant concentration and the rate capability of the doped

material.

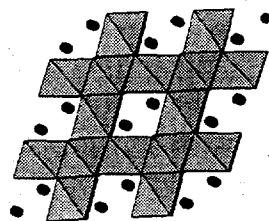


Figure 1. Structure of the titanium-based spinel $\text{Li}_4\text{Ti}_5\text{O}_{12}$. Black spheres represent lithium cations; gray polyhedra represent $[\text{Ti}(\text{Li})\text{O}_6]$ octahedra.

- (1) T. Ohzuku, A. Ueda, N. Yamamoto *J. Electrochem. Soc.* **142** 1431 (1995).
- (2) J. Vaughey, K. Kepler, A. Jansen, A. Kahaian, C. Johnson, K. Amine, D. Vissers, M. Thackeray *Abstracts of the 1998 Fall Materials Research Society*, EE3.94, p 568 (1998).
- (3) J. Irvine, S. Thiemann, G. Mather, A. Finch, H. Tukamoto *Solid State Ionics* **70/71** 445 (1994).