DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Designer interphases for the lithium-oxygen electrochemical cell

Abstract

An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e- + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but alsomore » react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [3];  [1]
  1. Cornell Univ., Ithaca, NY (United States). School of Chemical and Biomolecular Engineering
  2. Cornell Univ., Ithaca, NY (United States). Dept. of Materials Science and Engineering
  3. Cornell Univ., Ithaca, NY (United States). School of Applied and Engineering Physics; Cornell Univ., Ithaca, NY (United States). Kavli Inst. at Cornell for Nanoscale Science
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Engineering & Technology
OSTI Identifier:
1625969
Grant/Contract Number:  
SC0001086
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 4; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Science & Technology - Other Topics

Citation Formats

Choudhury, Snehashis, Wan, Charles Tai-Chieh, Al Sadat, Wajdi I., Tu, Zhengyuan, Lau, Sampson, Zachman, Michael J., Kourkoutis, Lena F., and Archer, Lynden A. Designer interphases for the lithium-oxygen electrochemical cell. United States: N. p., 2017. Web. doi:10.1126/sciadv.1602809.
Choudhury, Snehashis, Wan, Charles Tai-Chieh, Al Sadat, Wajdi I., Tu, Zhengyuan, Lau, Sampson, Zachman, Michael J., Kourkoutis, Lena F., & Archer, Lynden A. Designer interphases for the lithium-oxygen electrochemical cell. United States. https://doi.org/10.1126/sciadv.1602809
Choudhury, Snehashis, Wan, Charles Tai-Chieh, Al Sadat, Wajdi I., Tu, Zhengyuan, Lau, Sampson, Zachman, Michael J., Kourkoutis, Lena F., and Archer, Lynden A. Sat . "Designer interphases for the lithium-oxygen electrochemical cell". United States. https://doi.org/10.1126/sciadv.1602809. https://www.osti.gov/servlets/purl/1625969.
@article{osti_1625969,
title = {Designer interphases for the lithium-oxygen electrochemical cell},
author = {Choudhury, Snehashis and Wan, Charles Tai-Chieh and Al Sadat, Wajdi I. and Tu, Zhengyuan and Lau, Sampson and Zachman, Michael J. and Kourkoutis, Lena F. and Archer, Lynden A.},
abstractNote = {An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e- + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.},
doi = {10.1126/sciadv.1602809},
journal = {Science Advances},
number = 4,
volume = 3,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}

Works referenced in this record:

Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Effects of nitrogen on the carbon anode of a lithium secondary battery
journal, May 1999


Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


On-surface photo-dissociation of C–Br bonds: towards room temperature Ullmann coupling
journal, January 2015

  • Basagni, Andrea; Ferrighi, Lara; Cattelan, Mattia
  • Chemical Communications, Vol. 51, Issue 63
  • DOI: 10.1039/C5CC04317D

A stable cathode for the aprotic Li–O2 battery
journal, September 2013

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3737

Li–O 2 cells with LiBr as an electrolyte and a redox mediator
journal, January 2016

  • Kwak, Won-Jin; Hirshberg, Daniel; Sharon, Daniel
  • Energy & Environmental Science, Vol. 9, Issue 7
  • DOI: 10.1039/C6EE00700G

Control of the Intermolecular Coupling of Dibromotetracene on Cu(110) by the Sequential Activation of CBr and CH Bonds
journal, February 2015

  • Ferrighi, Lara; Píš, Igor; Nguyen, Thanh Hai
  • Chemistry - A European Journal, Vol. 21, Issue 15
  • DOI: 10.1002/chem.201405817

A self-defense redox mediator for efficient lithium–O 2 batteries
journal, January 2016

  • Zhang, Tao; Liao, Kaiming; He, Ping
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02803E

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

An Electrochemical Impedance Spectroscopy Study on the Effects of the Surface- and Solution-Based Mechanisms in Li-O 2 Cells
journal, January 2016

  • Knudsen, Kristian B.; Vegge, Tejs; McCloskey, Bryan D.
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.1111609jes

Thermal Stability of Li 2 O 2 and Li 2 O for Li-Air Batteries: In Situ XRD and XPS Studies
journal, January 2013

  • Yao, Koffi P. C.; Kwabi, David G.; Quinlan, Ronald A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.069306jes

Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites
journal, March 2013

  • Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.
  • Chemistry of Materials, Vol. 25, Issue 6
  • DOI: 10.1021/cm303091j

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Nucleation and Growth of Lithium Peroxide in the Li–O 2 Battery
journal, August 2015


Magnetism in Lithium-Oxygen Discharge Product
journal, May 2013


Understanding the behavior of Li–oxygen cells containing LiI
journal, January 2015

  • Kwak, Won-Jin; Hirshberg, Daniel; Sharon, Daniel
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA01399B

Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes
journal, February 2015

  • Lu, Yingying; Tikekar, Mukul; Mohanty, Ritesh
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201402073

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Nanoparticle networks reduce the flammability of polymer nanocomposites
journal, October 2005

  • Kashiwagi, Takashi; Du, Fangming; Douglas, Jack F.
  • Nature Materials, Vol. 4, Issue 12
  • DOI: 10.1038/nmat1502

Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries
journal, March 2014

  • Ha, Se-Young; Lee, Yong-Won; Woo, Sang Won
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 6, p. 4063-4073
  • DOI: 10.1021/am405619v

Nonaqueous Li–Air Batteries: A Status Report
journal, October 2014

  • Luntz, Alan C.; McCloskey, Bryan D.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500054y

A Rechargeable Li–O 2 Battery Using a Lithium Nitrate/ N , N -Dimethylacetamide Electrolyte
journal, January 2013

  • Walker, Wesley; Giordani, Vincent; Uddin, Jasim
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja311518s

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


Superior Rechargeability and Efficiency of Lithium-Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst
journal, March 2014

  • Lim, Hee-Dae; Song, Hyelynn; Kim, Jinsoo
  • Angewandte Chemie International Edition, Vol. 53, Issue 15
  • DOI: 10.1002/anie.201400711

Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode
journal, December 2015

  • Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201503169

Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches
journal, February 2015


Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions
journal, July 2016

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Science Advances, Vol. 2, Issue 7
  • DOI: 10.1126/sciadv.1600320

Trade-Offs in Capacity and Rechargeability in Nonaqueous Li–O 2 Batteries: Solution-Driven Growth versus Nucleophilic Stability
journal, March 2015

  • Khetan, Abhishek; Luntz, Alan; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 7
  • DOI: 10.1021/acs.jpclett.5b00324

Cycling Li-O2 batteries via LiOH formation and decomposition
journal, October 2015


Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Charging a Li–O2 battery using a redox mediator
journal, May 2013

  • Chen, Yuhui; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1646

Influence of Lithium Salts on the Discharge Chemistry of Li–Air Cells
journal, April 2012

  • Veith, Gabriel M.; Nanda, Jagjit; Delmau, Laetitia H.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 10
  • DOI: 10.1021/jz300430s

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries
journal, November 2015


Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
journal, December 2011

  • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2087412

In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
journal, October 2012

  • Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00715

An Electrochemical Impedance Spectroscopy Investigation of the Overpotentials in Li–O 2 Batteries
journal, February 2015

  • Højberg, Jonathan; McCloskey, Bryan D.; Hjelm, Johan
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 7
  • DOI: 10.1021/am5083254

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries
journal, June 2014

  • Sun, Dan; Shen, Yue; Zhang, Wang
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja501877e

The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries
journal, November 2012

  • Bryantsev, Vyacheslav S.; Uddin, Jasim; Giordani, Vincent
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.027302jes

Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth
journal, November 2014

  • Jäckle, Markus; Groß, Axel
  • The Journal of Chemical Physics, Vol. 141, Issue 17
  • DOI: 10.1063/1.4901055

The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries
journal, January 2010

  • Lu, Yi-Chun; Gasteiger, Hubert A.; Parent, Michael C.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 6, p. A69-A72
  • DOI: 10.1149/1.3363047

A highly active nanostructured metallic oxide cathode for aprotic Li–O 2 batteries
journal, January 2015

  • Kundu, Dipan; Black, Robert; Berg, Erik Jämstorp
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE02587C

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

The Effect of Interactions and Reduction Products of LiNO 3 , the Anti-Shuttle Agent, in Li-S Battery Systems
journal, December 2014

  • Rosenman, Ariel; Elazari, Ran; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0861503jes

Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte
journal, January 2015

  • Agrawal, Akanksha; Choudhury, Snehashis; Archer, Lynden A.
  • RSC Advances, Vol. 5, Issue 27
  • DOI: 10.1039/C5RA01031D

Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization
journal, August 2013

  • Di Giovannantonio, Marco; El Garah, Mohamed; Lipton-Duffin, Josh
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn4035684

Stability Analysis of Electrodeposition across a Structured Electrolyte with Immobilized Anions
journal, January 2014

  • Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.085405jes

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O 2 battery capacity
journal, July 2015

  • Burke, Colin M.; Pande, Vikram; Khetan, Abhishek
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505728112

Ullmann-type coupling of brominated tetrathienoanthracene on copper and silver
journal, January 2014

  • Gutzler, Rico; Cardenas, Luis; Lipton-Duffin, Josh
  • Nanoscale, Vol. 6, Issue 5
  • DOI: 10.1039/C3NR05710K

Cycling Li-O2 Batteries via LiOH Formation and Decomposition
preprint, January 2018


Magnetism in Lithium-Oxygen Discharge Product
journal, May 2013


Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches
journal, February 2015


Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Nucleation and Growth of Lithium Peroxide in the Li–O 2 Battery
journal, August 2015


A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium–Oxygen Batteries
journal, November 2015


An Electrochemical Impedance Spectroscopy Investigation of the Overpotentials in Li–O 2 Batteries
journal, February 2015

  • Højberg, Jonathan; McCloskey, Bryan D.; Hjelm, Johan
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 7
  • DOI: 10.1021/am5083254

High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites
journal, March 2013

  • Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.
  • Chemistry of Materials, Vol. 25, Issue 6
  • DOI: 10.1021/cm303091j

Nonaqueous Li–Air Batteries: A Status Report
journal, October 2014

  • Luntz, Alan C.; McCloskey, Bryan D.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500054y

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

A Rechargeable Li–O 2 Battery Using a Lithium Nitrate/ N , N -Dimethylacetamide Electrolyte
journal, January 2013

  • Walker, Wesley; Giordani, Vincent; Uddin, Jasim
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja311518s

A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries
journal, June 2014

  • Sun, Dan; Shen, Yue; Zhang, Wang
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja501877e

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Influence of Lithium Salts on the Discharge Chemistry of Li–Air Cells
journal, April 2012

  • Veith, Gabriel M.; Nanda, Jagjit; Delmau, Laetitia H.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 10
  • DOI: 10.1021/jz300430s

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Insight into Organometallic Intermediate and Its Evolution to Covalent Bonding in Surface-Confined Ullmann Polymerization
journal, August 2013

  • Di Giovannantonio, Marco; El Garah, Mohamed; Lipton-Duffin, Josh
  • ACS Nano, Vol. 7, Issue 9
  • DOI: 10.1021/nn4035684

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Understanding the fundamentals of redox mediators in Li–O 2 batteries: a case study on nitroxides
journal, January 2015

  • Bergner, Benjamin J.; Hofmann, Christine; Schürmann, Adrian
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 47
  • DOI: 10.1039/c5cp04505c

Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O 2 battery capacity
journal, July 2015

  • Burke, Colin M.; Pande, Vikram; Khetan, Abhishek
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 30
  • DOI: 10.1073/pnas.1505728112

The Effect of Interactions and Reduction Products of LiNO 3 , the Anti-Shuttle Agent, in Li-S Battery Systems
journal, December 2014

  • Rosenman, Ariel; Elazari, Ran; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0861503jes

An Electrochemical Impedance Spectroscopy Study on the Effects of the Surface- and Solution-Based Mechanisms in Li-O 2 Cells
journal, January 2016

  • Knudsen, Kristian B.; Vegge, Tejs; McCloskey, Bryan D.
  • Journal of The Electrochemical Society, Vol. 163, Issue 9
  • DOI: 10.1149/2.1111609jes

Works referencing / citing this record:

Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials
journal, October 2019

  • Zachman, Michael J.; Hachtel, Jordan A.; Idrobo, Juan Carlos
  • Angewandte Chemie, Vol. 132, Issue 4
  • DOI: 10.1002/ange.201902993

Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries
journal, September 2018


Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport
journal, September 2017

  • Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna
  • Angewandte Chemie, Vol. 129, Issue 42
  • DOI: 10.1002/ange.201707754

3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode
journal, December 2017


Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
journal, December 2018


Dendrite‐Free Epitaxial Growth of Lithium Metal during Charging in Li–O 2 Batteries
journal, October 2018

  • Xin, Xing; Ito, Kimihiko; Dutta, Arghya
  • Angewandte Chemie International Edition, Vol. 57, Issue 40
  • DOI: 10.1002/anie.201808154

A Material Perspective of Rechargeable Metallic Lithium Anodes
journal, February 2018


Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries
journal, December 2017


A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries
journal, February 2019


3D-Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li-CO 2 Batteries
journal, October 2018

  • Qiao, Yun; Liu, Yang; Chen, Chaoji
  • Advanced Functional Materials, Vol. 28, Issue 51
  • DOI: 10.1002/adfm.201805899

Designing solid-liquid interphases for sodium batteries
journal, October 2017


Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries
journal, October 2018


Interfacial Super‐Assembled Porous CeO 2 /C Frameworks Featuring Efficient and Sensitive Decomposing Li 2 O 2 for Smart Li–O 2 Batteries
journal, September 2019


PEEK‐WC/Nanosponge Membranes for Lithium‐Anode Protection in Rechargeable Li−O 2 Batteries
journal, May 2018

  • Amici, Julia; Alidoost, Mojtaba; Caldera, Fabrizio
  • ChemElectroChem, Vol. 5, Issue 12
  • DOI: 10.1002/celc.201800241

Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries
journal, November 2018


Highly efficient and stable solid-state Li–O 2 batteries using a perovskite solid electrolyte
journal, January 2019

  • Le, Hang T. T.; Ngo, Duc Tung; Didwal, Pravin N.
  • Journal of Materials Chemistry A, Vol. 7, Issue 7
  • DOI: 10.1039/c8ta10771h

Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime
journal, November 2018


Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials
journal, January 2020

  • Zachman, Michael J.; Hachtel, Jordan A.; Idrobo, Juan Carlos
  • Angewandte Chemie International Edition, Vol. 59, Issue 4
  • DOI: 10.1002/anie.201902993

Dendrite‐Free Epitaxial Growth of Lithium Metal during Charging in Li–O 2 Batteries
journal, September 2018


Functional and stability orientation synthesis of materials and structures in aprotic Li–O 2 batteries
journal, January 2018

  • Zhang, Peng; Zhao, Yong; Zhang, Xinbo
  • Chemical Society Reviews, Vol. 47, Issue 8
  • DOI: 10.1039/c8cs00009c

Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport
journal, September 2017

  • Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna
  • Angewandte Chemie International Edition, Vol. 56, Issue 42
  • DOI: 10.1002/anie.201707754

Taming Interfacial Instability in Lithium–Oxygen Batteries: A Polymeric Ionic Liquid Electrolyte Solution
journal, September 2019

  • Liu, Zhenjie; Huang, Jun; Zhang, Yantao
  • Advanced Energy Materials, Vol. 9, Issue 41
  • DOI: 10.1002/aenm.201901967

Can Hybrid Na–Air Batteries Outperform Nonaqueous Na–O 2 Batteries?
journal, January 2020

  • Khan, Ziyauddin; Vagin, Mikhail; Crispin, Xavier
  • Advanced Science, Vol. 7, Issue 5
  • DOI: 10.1002/advs.201902866

Cryogenic specimens for nanoscale characterization of solid–liquid interfaces
journal, December 2019

  • Zachman, Michael J.; de Jonge, Niels; Fischer, Robert
  • MRS Bulletin, Vol. 44, Issue 12
  • DOI: 10.1557/mrs.2019.289

Designing solid-liquid interphases for sodium batteries
journal, October 2017


An ion redistributor for dendrite-free lithium metal anodes
journal, November 2018