DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes

Abstract

Abstract Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm −2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1506957
Alternate Identifier(s):
OSTI ID: 1489295
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 7; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Coulombic efficiency; host; lithium metal anodes; SEI

Citation Formats

Wang, Hansen, Lin, Dingchang, Xie, Jin, Liu, Yayuan, Chen, Hao, Li, Yanbin, Xu, Jinwei, Zhou, Guangmin, Zhang, Zewen, Pei, Allen, Zhu, Yangying, Liu, Kai, Wang, Kecheng, and Cui, Yi. An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes. United States: N. p., 2019. Web. doi:10.1002/aenm.201802720.
Wang, Hansen, Lin, Dingchang, Xie, Jin, Liu, Yayuan, Chen, Hao, Li, Yanbin, Xu, Jinwei, Zhou, Guangmin, Zhang, Zewen, Pei, Allen, Zhu, Yangying, Liu, Kai, Wang, Kecheng, & Cui, Yi. An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes. United States. https://doi.org/10.1002/aenm.201802720
Wang, Hansen, Lin, Dingchang, Xie, Jin, Liu, Yayuan, Chen, Hao, Li, Yanbin, Xu, Jinwei, Zhou, Guangmin, Zhang, Zewen, Pei, Allen, Zhu, Yangying, Liu, Kai, Wang, Kecheng, and Cui, Yi. Wed . "An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes". United States. https://doi.org/10.1002/aenm.201802720. https://www.osti.gov/servlets/purl/1506957.
@article{osti_1506957,
title = {An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes},
author = {Wang, Hansen and Lin, Dingchang and Xie, Jin and Liu, Yayuan and Chen, Hao and Li, Yanbin and Xu, Jinwei and Zhou, Guangmin and Zhang, Zewen and Pei, Allen and Zhu, Yangying and Liu, Kai and Wang, Kecheng and Cui, Yi},
abstractNote = {Abstract Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm −2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.},
doi = {10.1002/aenm.201802720},
journal = {Advanced Energy Materials},
number = 7,
volume = 9,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 83 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
journal, January 2018


The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
journal, January 2018


Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries
journal, April 2018


Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries
journal, January 2015

  • Li, Bing; Geng, Dongsheng; Lee, Xinjing Shannon
  • Chemical Communications, Vol. 51, Issue 42
  • DOI: 10.1039/C5CC01999K

Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles
journal, January 1999

  • Shiraishi, Soshi
  • Journal of The Electrochemical Society, Vol. 146, Issue 5
  • DOI: 10.1149/1.1391818

Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix
journal, April 2017

  • Lin, Dingchang; Zhao, Jie; Sun, Jie
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 18
  • DOI: 10.1073/pnas.1619489114

A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
journal, January 2018

  • Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia
  • Angewandte Chemie International Edition, Vol. 57, Issue 6
  • DOI: 10.1002/anie.201710806

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


A reversible dendrite-free high-areal-capacity lithium metal electrode
journal, April 2017

  • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15106

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
journal, February 2017


Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials
journal, March 2016

  • Chen, Teng; Tang, Yongfu; Qiao, Yuqing
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23289

Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, August 2015


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
journal, March 2018

  • Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201801513

Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries
journal, August 2016


Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying
journal, October 2012

  • Puig, A.; Perez-Munuera, I.; Carcel, J. A.
  • Food and Bioproducts Processing, Vol. 90, Issue 4
  • DOI: 10.1016/j.fbp.2012.07.001

Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework
journal, September 2017


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity
journal, December 2017


Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode
journal, January 2019


An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal
journal, December 2017


High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating
journal, November 2016


Preparation of eggplant-derived macroporous carbon tubes and composites of EDMCT/Co(OH)(CO 3 ) 0.5 nano-cone-arrays for high-performance supercapacitors
journal, January 2016

  • Qu, Yicheng; Zan, Guangtao; Wang, Jiaxian
  • Journal of Materials Chemistry A, Vol. 4, Issue 11
  • DOI: 10.1039/C5TA09948J

Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
journal, August 2017

  • Zhao, Jie; Liao, Lei; Shi, Feifei
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b05251

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Incorporating Ionic Paths into 3D Conducting Scaffolds for High Volumetric and Areal Capacity, High Rate Lithium-Metal Anodes
journal, July 2018


Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes
journal, January 2017


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, October 2015


A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
journal, January 2018


Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries
journal, March 2021

  • Huang, Chen-Jui; Thirumalraj, Balamurugan; Tao, Hsien-Chu
  • Nature Communications, Vol. 12, Issue 1
  • DOI: 10.1038/s41467-021-21683-6

Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
journal, March 2018

  • Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing
  • Angewandte Chemie, Vol. 130, Issue 19
  • DOI: 10.1002/ange.201801513

Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes
text, January 2014


Works referencing / citing this record:

In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture
journal, December 2019

  • Chen, Dongdong; Huang, Sheng; Zhong, Lei
  • Advanced Functional Materials, Vol. 30, Issue 7
  • DOI: 10.1002/adfm.201907717

Plating/Stripping Behavior of Actual Lithium Metal Anode
journal, October 2019


Large‐Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery
journal, January 2020


In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes
journal, January 2020


Lithium Metal Anode Materials Design: Interphase and Host
journal, October 2019


Shape-stabilized phase-change materials supported by eggplant-derived porous carbon for efficient solar-to-thermal energy conversion and storage
journal, January 2020

  • Li, Yaqiong; Huang, Xiubing; Li, Yang
  • Sustainable Energy & Fuels, Vol. 4, Issue 4
  • DOI: 10.1039/c9se01272a