DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries

Abstract

Advancement of all-solid-state lithium-ion (Li+) batteries (ASSLIBs) has been hindered by the large interfacial resistance mainly originating from interfacial reactions between oxide cathodes and solid-state sulfide electrolytes (SEs). To suppress the interfacial reactions, an interfacial coating layer between cathodes and SEs is indispensable. However, the kinetics of interfacial Li+ transport across the coating layer has not been well understood yet. Herein, we tune the interfacial ionic conductivity of the coating layer LiNb0.5Ta0.5O3 (LNTO) by manipulating post-annealing temperature. It is found that the interfacial ionic conductivity determines interfacial Li+ transport kinetics and enhancing the interfacial ionic conductivity can significantly boost the electrochemical performance of SE-based ASSLIBs. A representative cathode LiNi0.5Mn0.3Co0.2O2 coated by LNTO with the highest interfacial ionic conductivity exhibits a high initial capacity of 152 mAh.g-1 at 0.1 C and 107.5 mAh.g-1 at 1C. This work highlights the importance of increasing interfacial ionic conductivity for high-performance SE-based ASSLIBs.

Authors:
 [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [4];  [4];  [2]; ORCiD logo [1]
  1. Univ. of Western Ontario, London, ON (Canada)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Glabat Solid-State Battery Inc., London, ON (Canada)
  4. China Automotive Battery Research Inst. Co. (China)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1605675
Alternate Identifier(s):
OSTI ID: 1703070
Report Number(s):
BNL-213737-2020-JAAM
Journal ID: ISSN 2211-2855
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 72; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; interfacial ionic conductivity; ion transport kinetics; all-solid-state batteries

Citation Formats

Wang, Changhong, Liang, Jianwen, Hwang, Sooyeon, Li, Xiaona, Zhao, Yang, Adair, Keegan, Zhao, Changtai, Li, Xia, Deng, Sixu, Lin, Xiaoting, Yang, Xiaofei, Li, Ruying, Huang, Huan, Zhang, Li, Lu, Shigang, Su, Dong, and Sun, Xueliang. Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. United States: N. p., 2020. Web. doi:10.1016/j.nanoen.2020.104686.
Wang, Changhong, Liang, Jianwen, Hwang, Sooyeon, Li, Xiaona, Zhao, Yang, Adair, Keegan, Zhao, Changtai, Li, Xia, Deng, Sixu, Lin, Xiaoting, Yang, Xiaofei, Li, Ruying, Huang, Huan, Zhang, Li, Lu, Shigang, Su, Dong, & Sun, Xueliang. Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. United States. https://doi.org/10.1016/j.nanoen.2020.104686
Wang, Changhong, Liang, Jianwen, Hwang, Sooyeon, Li, Xiaona, Zhao, Yang, Adair, Keegan, Zhao, Changtai, Li, Xia, Deng, Sixu, Lin, Xiaoting, Yang, Xiaofei, Li, Ruying, Huang, Huan, Zhang, Li, Lu, Shigang, Su, Dong, and Sun, Xueliang. Mon . "Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries". United States. https://doi.org/10.1016/j.nanoen.2020.104686. https://www.osti.gov/servlets/purl/1605675.
@article{osti_1605675,
title = {Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries},
author = {Wang, Changhong and Liang, Jianwen and Hwang, Sooyeon and Li, Xiaona and Zhao, Yang and Adair, Keegan and Zhao, Changtai and Li, Xia and Deng, Sixu and Lin, Xiaoting and Yang, Xiaofei and Li, Ruying and Huang, Huan and Zhang, Li and Lu, Shigang and Su, Dong and Sun, Xueliang},
abstractNote = {Advancement of all-solid-state lithium-ion (Li+) batteries (ASSLIBs) has been hindered by the large interfacial resistance mainly originating from interfacial reactions between oxide cathodes and solid-state sulfide electrolytes (SEs). To suppress the interfacial reactions, an interfacial coating layer between cathodes and SEs is indispensable. However, the kinetics of interfacial Li+ transport across the coating layer has not been well understood yet. Herein, we tune the interfacial ionic conductivity of the coating layer LiNb0.5Ta0.5O3 (LNTO) by manipulating post-annealing temperature. It is found that the interfacial ionic conductivity determines interfacial Li+ transport kinetics and enhancing the interfacial ionic conductivity can significantly boost the electrochemical performance of SE-based ASSLIBs. A representative cathode LiNi0.5Mn0.3Co0.2O2 coated by LNTO with the highest interfacial ionic conductivity exhibits a high initial capacity of 152 mAh.g-1 at 0.1 C and 107.5 mAh.g-1 at 1C. This work highlights the importance of increasing interfacial ionic conductivity for high-performance SE-based ASSLIBs.},
doi = {10.1016/j.nanoen.2020.104686},
journal = {Nano Energy},
number = C,
volume = 72,
place = {United States},
year = {Mon Jun 01 00:00:00 EDT 2020},
month = {Mon Jun 01 00:00:00 EDT 2020}
}

Journal Article:

Citation Metrics:
Cited by: 37 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanoscale Mapping of Extrinsic Interfaces in Hybrid Solid Electrolytes
journal, January 2020


Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery
journal, February 2019

  • Miura, Akira; Rosero-Navarro, Nataly Carolina; Sakuda, Atsushi
  • Nature Reviews Chemistry, Vol. 3, Issue 3
  • DOI: 10.1038/s41570-019-0078-2

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li 6+ x P 1– x Ge x S 5 I for All-Solid-State Batteries
journal, October 2018

  • Kraft, Marvin A.; Ohno, Saneyuki; Zinkevich, Tatiana
  • Journal of the American Chemical Society, Vol. 140, Issue 47
  • DOI: 10.1021/jacs.8b10282

A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature
journal, November 2019


On the Functionality of Coatings for Cathode Active Materials in Thiophosphate‐Based All‐Solid‐State Batteries
journal, May 2019

  • Culver, Sean P.; Koerver, Raimund; Zeier, Wolfgang G.
  • Advanced Energy Materials, Vol. 9, Issue 24
  • DOI: 10.1002/aenm.201900626

Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
journal, December 2018


High-performance all-solid-state Li–Se batteries induced by sulfide electrolytes
journal, January 2018

  • Li, Xiaona; Liang, Jianwen; Li, Xia
  • Energy & Environmental Science, Vol. 11, Issue 10
  • DOI: 10.1039/C8EE01621F

Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery
journal, February 2014


Solution-Processable Glass LiI-Li 4 SnS 4 Superionic Conductors for All-Solid-State Li-Ion Batteries
journal, December 2015

  • Park, Kern Ho; Oh, Dae Yang; Choi, Young Eun
  • Advanced Materials, Vol. 28, Issue 9
  • DOI: 10.1002/adma.201505008

Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie International Edition, Vol. 55, Issue 33
  • DOI: 10.1002/anie.201604158

Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries
journal, April 2018

  • Park, Kern Ho; Bai, Qiang; Kim, Dong Hyeon
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800035

Lithium-Ion-Conducting Argyrodite-Type Li 6 PS 5 X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent
journal, July 2018

  • Yubuchi, So; Uematsu, Miwa; Deguchi, Minako
  • ACS Applied Energy Materials, Vol. 1, Issue 8
  • DOI: 10.1021/acsaem.8b00280

LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
journal, July 2007


Manipulating Interfacial Nanostructure to Achieve High‐Performance All‐Solid‐State Lithium‐Ion Batteries
journal, April 2019


Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Ionic conductivity of quenched alkali niobate and tantalate glasses
journal, September 1978

  • Glass, A. M.; Nassau, K.; Negran, T. J.
  • Journal of Applied Physics, Vol. 49, Issue 9
  • DOI: 10.1063/1.325509

High Li+ Conducting Ceramics
journal, September 1994

  • Aono, Hiromichi; Imanaka, Nobuhito; Adachi, Gin-ya
  • Accounts of Chemical Research, Vol. 27, Issue 9
  • DOI: 10.1021/ar00045a002

Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3
journal, August 1999

  • Lanfredi, S.; Rodrigues, A. C. M.
  • Journal of Applied Physics, Vol. 86, Issue 4
  • DOI: 10.1063/1.371033

A High-Throughput Approach Developing Lithium-Niobium-Tantalum Oxides as Electrolyte/Cathode Interlayers for High-Voltage All-Solid-State Lithium Batteries
journal, January 2015

  • Yada, Chihiro; Lee, Christopher E.; Laughman, David
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0661504jes

Electrochemical lithium insertion in sol-gel deposited LiNbO3 films
journal, December 1995


Solid‐State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide‐Based All‐Solid‐State Lithium Metal Batteries
journal, March 2019

  • Wang, Changhong; Adair, Keegan R.; Liang, Jianwen
  • Advanced Functional Materials, Vol. 29, Issue 26
  • DOI: 10.1002/adfm.201900392

All-solid-state Lithium Secondary Batteries Using Li 2 S–P 2 S 5 Solid Electrolytes and LiFePO 4 Electrode Particles with Amorphous Surface Layer
journal, March 2012

  • Sakuda, Atsushi; Kitaura, Hirokazu; Hayashi, Akitoshi
  • Chemistry Letters, Vol. 41, Issue 3
  • DOI: 10.1246/cl.2012.260

A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte
journal, February 2014


Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials
journal, October 2012


Interfacial modification for high-power solid-state lithium batteries
journal, September 2008


Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material
journal, April 2011


Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material
journal, February 2010


Atomic Layered Coating Enabling Ultrafast Surface Kinetics at Silicon Electrodes in Lithium Ion Batteries
journal, September 2013

  • Li, Juchuan; Xiao, Xingcheng; Cheng, Yang-Tse
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz4018255

Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase
journal, September 2012

  • Shi, Siqi; Lu, Peng; Liu, Zhongyi
  • Journal of the American Chemical Society, Vol. 134, Issue 37
  • DOI: 10.1021/ja305366r

Atomic Layer Deposition of Al–W–Fluoride on LiCoO 2 Cathodes: Comparison of Particle- and Electrode-Level Coatings
journal, July 2017


Electrochemical Stability of Thin-Film LiCoO 2 Cathodes by Aluminum-Oxide Coating
journal, April 2003

  • Kim, Yong Jeong; Kim, Hyemin; Kim, Byoungsoo
  • Chemistry of Materials, Vol. 15, Issue 7
  • DOI: 10.1021/cm0201403

Mitigating Interfacial Potential Drop of Cathode–Solid Electrolyte via Ionic Conductor Layer To Enhance Interface Dynamics for Solid Batteries
journal, April 2018

  • Liang, Jia-Yan; Zeng, Xian-Xiang; Zhang, Xu-Dong
  • Journal of the American Chemical Society, Vol. 140, Issue 22
  • DOI: 10.1021/jacs.8b03319