DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass

Abstract

Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness and biomass with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Furthermore, our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may helpmore » to constrain climate projections.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [6];  [7];  [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11];  [12]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [15]; ORCiD logo [6]; ORCiD logo [16];  [17]; ORCiD logo [18];  [19] more »;  [20];  [21];  [22]; ORCiD logo [2];  [23];  [24];  [25];  [26];  [27];  [10];  [28];  [12] « less
  1. Stanford Univ., Stanford, CA (United States); Univ. Autònoma de Barcelona, Barcelona (Spain); International Inst. for Applied Systems Analysis, Laxenburg (Austria)
  2. Stanford Univ., Stanford, CA (United States)
  3. Imperial College London, Ascot (United Kingdom); Macquarie Univ., New South Wales (Australia); Tsinghua Univ., Beijing (China)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Univ. of Vienna, Vienna (Austria); International Inst. for Applied Systems Analysis, Laxenburg (Austria)
  6. Univ. of Antwerp, Wilrijk (Belgium)
  7. California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of California, Los Angeles, CA (United States)
  8. Univ. of Minnesota, St. Paul, MN (United States); Western Sydney Univ., New South Wales (Australia)
  9. CREAF, Cerdanyola del Vallès (Spain)
  10. Northern Arizona Univ., Flagstaff, AZ (United States)
  11. CREAF, Cerdanyola del Vallès (Spain); Global Ecology Unit CREAF-CEAB-UAB, Bellaterra (Spain)
  12. International Inst. for Applied Systems Analysis, Laxenburg (Austria)
  13. Leiden Univ., Leiden (The Netherlands)
  14. James Cook Univ., Queensland (Australia)
  15. Univ. of Idaho, Moscow, ID (United States)
  16. Peking Univ., Beijing (China); Chinese Academy of Sciences (CAS), Beijing (China)
  17. AgResearch, Palmerston North (New Zealand)
  18. Univ. of Tasmania, Tasmania (Australia)
  19. United States Dept. of Agriculture, Fort Collins, CO (United States)
  20. Nanjing Univ. of Information Science and Technology, Nanjing (China)
  21. Justus Liebig Univ. of Giessen, Giessen (Germany); Univ. College Dublin, Belfield (Ireland)
  22. Smithsonian Tropical Research Institute, Balboa (Republic of Panama)
  23. Maastricht Univ., Maastricht (The Netherlands)
  24. Utrecht Univ., Utrecht (The Netherlands)
  25. Wageningen Univ., Wageningen (The Netherlands)
  26. Tokyo Univ. of Agriculture and Technology, Fuchu (Japan)
  27. Hokkaido Univ., Sapporo (Japan)
  28. USDA, Agricultural Research Service, Temple, TX (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1574338
Grant/Contract Number:  
AC02-05CH11231; MDM-2015-0552; ERC-2013-SyG-610028; NNH17AE86I
Resource Type:
Accepted Manuscript
Journal Name:
Nature Climate Change
Additional Journal Information:
Journal Volume: 9; Journal Issue: 9; Journal ID: ISSN 1758-678X
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Terrer, César, Jackson, Robert B., Prentice, I. Colin, Keenan, Trevor F., Kaiser, Christina, Vicca, Sara, Fisher, Joshua B., Reich, Peter B., Stocker, Benjamin D., Hungate, Bruce A., Peñuelas, Josep, McCallum, Ian, Soudzilovskaia, Nadejda A., Cernusak, Lucas A., Talhelm, Alan F., Van Sundert, Kevin, Piao, Shilong, Newton, Paul C. D., Hovenden, Mark J., Blumenthal, Dana M., Liu, Yi Y., Müller, Christoph, Winter, Klaus, Field, Christopher B., Viechtbauer, Wolfgang, Van Lissa, Caspar J., Hoosbeek, Marcel R., Watanabe, Makoto, Koike, Takayoshi, Leshyk, Victor O., Polley, H. Wayne, and Franklin, Oskar. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. United States: N. p., 2019. Web. doi:10.1038/s41558-019-0545-2.
Terrer, César, Jackson, Robert B., Prentice, I. Colin, Keenan, Trevor F., Kaiser, Christina, Vicca, Sara, Fisher, Joshua B., Reich, Peter B., Stocker, Benjamin D., Hungate, Bruce A., Peñuelas, Josep, McCallum, Ian, Soudzilovskaia, Nadejda A., Cernusak, Lucas A., Talhelm, Alan F., Van Sundert, Kevin, Piao, Shilong, Newton, Paul C. D., Hovenden, Mark J., Blumenthal, Dana M., Liu, Yi Y., Müller, Christoph, Winter, Klaus, Field, Christopher B., Viechtbauer, Wolfgang, Van Lissa, Caspar J., Hoosbeek, Marcel R., Watanabe, Makoto, Koike, Takayoshi, Leshyk, Victor O., Polley, H. Wayne, & Franklin, Oskar. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. United States. https://doi.org/10.1038/s41558-019-0545-2
Terrer, César, Jackson, Robert B., Prentice, I. Colin, Keenan, Trevor F., Kaiser, Christina, Vicca, Sara, Fisher, Joshua B., Reich, Peter B., Stocker, Benjamin D., Hungate, Bruce A., Peñuelas, Josep, McCallum, Ian, Soudzilovskaia, Nadejda A., Cernusak, Lucas A., Talhelm, Alan F., Van Sundert, Kevin, Piao, Shilong, Newton, Paul C. D., Hovenden, Mark J., Blumenthal, Dana M., Liu, Yi Y., Müller, Christoph, Winter, Klaus, Field, Christopher B., Viechtbauer, Wolfgang, Van Lissa, Caspar J., Hoosbeek, Marcel R., Watanabe, Makoto, Koike, Takayoshi, Leshyk, Victor O., Polley, H. Wayne, and Franklin, Oskar. Mon . "Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass". United States. https://doi.org/10.1038/s41558-019-0545-2. https://www.osti.gov/servlets/purl/1574338.
@article{osti_1574338,
title = {Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass},
author = {Terrer, César and Jackson, Robert B. and Prentice, I. Colin and Keenan, Trevor F. and Kaiser, Christina and Vicca, Sara and Fisher, Joshua B. and Reich, Peter B. and Stocker, Benjamin D. and Hungate, Bruce A. and Peñuelas, Josep and McCallum, Ian and Soudzilovskaia, Nadejda A. and Cernusak, Lucas A. and Talhelm, Alan F. and Van Sundert, Kevin and Piao, Shilong and Newton, Paul C. D. and Hovenden, Mark J. and Blumenthal, Dana M. and Liu, Yi Y. and Müller, Christoph and Winter, Klaus and Field, Christopher B. and Viechtbauer, Wolfgang and Van Lissa, Caspar J. and Hoosbeek, Marcel R. and Watanabe, Makoto and Koike, Takayoshi and Leshyk, Victor O. and Polley, H. Wayne and Franklin, Oskar},
abstractNote = {Elevated CO2 (eCO2) experiments provide critical information to quantify the effects of rising CO2 on vegetation. Many eCO2 experiments suggest that nutrient limitations modulate the local magnitude of the eCO2 effect on plant biomass, but the global extent of these limitations has not been empirically quantified, complicating projections of the capacity of plants to take up CO2. Here, we present a data-driven global quantification of the eCO2 effect on biomass based on 138 eCO2 experiments. The strength of CO2 fertilization is primarily driven by nitrogen (N) in ~65% of global vegetation and by phosphorus (P) in ~25% of global vegetation, with N- or P-limitation modulated by mycorrhizal association. Our approach suggests that CO2 levels expected by 2100 can potentially enhance plant biomass by 12 ± 3% above current values, equivalent to 59 ± 13 PgC. The global-scale response to eCO2 we derive from experiments is similar to past changes in greenness and biomass with rising CO2, suggesting that CO2 will continue to stimulate plant biomass in the future despite the constraining effect of soil nutrients. Furthermore, our research reconciles conflicting evidence on CO2 fertilization across scales and provides an empirical estimate of the biomass sensitivity to eCO2 that may help to constrain climate projections.},
doi = {10.1038/s41558-019-0545-2},
journal = {Nature Climate Change},
number = 9,
volume = 9,
place = {United States},
year = {Mon Aug 12 00:00:00 EDT 2019},
month = {Mon Aug 12 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 197 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Soil C:N and soil P are key plant resources driving the CO2 fertilization effect on above-ground biomass. Model selection identified the most important drivers of the effect in the dataset of CO2 experiments (n = 138), indicating responses to CO2 were modulated by mycorrhizal type. a,b, Meta-analytic scatterplots showing themore » relationship between the CO2 effect and soil C:N (an indicator of nitrogen availability) in AM studies (n = 86) at 0–10 cm (a), and soil available phosphorus in ECM studies (n = 52) measured by the Bray method at 0–10 cm (b). The type of fumigation technology used (FACE, growth chamber and open top chamber) significantly influenced (P < 0.001) the magnitude of the CO2 effect. Regression lines represent the response found in FACE studies, based on a mixed-effects meta-regression model (pseudo-R2 = 0.94) and their 95% confidence intervals. Dot sizes are drawn proportional to the weights in the model and represent, on average, an increase in atmospheric CO2 of 250 ppm. G, growth chamber; OTC, open top chamber.« less

Save / Share:

Works referenced in this record:

Does the growth response of woody plants to elevated CO 2 increase with temperature? A model-oriented meta-analysis
journal, September 2015

  • Baig, Sofia; Medlyn, Belinda E.; Mercado, Lina M.
  • Global Change Biology, Vol. 21, Issue 12
  • DOI: 10.1111/gcb.12962

Nutrient acquisition strategies augment growth in tropical N 2 ‐fixing trees in nutrient‐poor soil and under elevated CO 2
journal, February 2019

  • Nasto, Megan K.; Winter, Klaus; Turner, Benjamin L.
  • Ecology, Vol. 100, Issue 4
  • DOI: 10.1002/ecy.2646

Using ecosystem experiments to improve vegetation models
journal, May 2015

  • Medlyn, Belinda E.; Zaehle, Sönke; De Kauwe, Martin G.
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2621

Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil
journal, March 2017

  • Ellsworth, David S.; Anderson, Ian C.; Crous, Kristine Y.
  • Nature Climate Change, Vol. 7, Issue 4
  • DOI: 10.1038/nclimate3235

Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods
journal, October 2018


Changing Amazon biomass and the role of atmospheric CO 2 concentration, climate, and land use : CHANGING AMAZON BIOMASS
journal, January 2016

  • de Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke
  • Global Biogeochemical Cycles, Vol. 30, Issue 1
  • DOI: 10.1002/2015GB005135

Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2
journal, April 2014

  • Evans, R. D.; Koyama, A.; Sonderegger, D. L.
  • Nature Climate Change, Vol. 4, Issue 5
  • DOI: 10.1038/nclimate2184

Global Carbon Budget 2018
journal, January 2018

  • Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre
  • Earth System Science Data, Vol. 10, Issue 4
  • DOI: 10.5194/essd-10-2141-2018

Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO 2 and temperature
journal, June 2012


Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for r
journal, October 2015


Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands
journal, January 2016

  • Jiao, Feng; Shi, Xin-Rong; Han, Feng-Peng
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19601

Phylogenetic distribution and evolution of mycorrhizas in land plants
journal, May 2006


MissForest--non-parametric missing value imputation for mixed-type data
journal, October 2011


Mycorrhizal association as a primary control of the CO 2 fertilization effect
journal, June 2016


A Large and Persistent Carbon Sink in the World's Forests
journal, July 2011


glmulti : An R Package for Easy Automated Model Selection with (Generalized) Linear Models
journal, January 2010

  • Calcagno, Vincent; Mazancourt, Claire de
  • Journal of Statistical Software, Vol. 34, Issue 12
  • DOI: 10.18637/jss.v034.i12

Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects
journal, December 2017


Response to Comment on “Mycorrhizal association as a primary control of the CO 2 fertilization effect”
journal, January 2017


Conducting Meta-Analyses in R with the metafor Package
journal, January 2010


Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation
journal, November 2014

  • Reich, Peter B.; Hobbie, Sarah E.; Lee, Tali D.
  • Nature Geoscience, Vol. 7, Issue 12
  • DOI: 10.1038/ngeo2284

The Global Stoichiometry of Litter Nitrogen Mineralization
journal, August 2008


Resolving Ecological Questions Through Meta-Analysis: Goals, Metrics, and Models
journal, June 1999


Global patterns of soil nitrogen storage
journal, October 1985

  • Post, Wilfred M.; Pastor, John; Zinke, Paul J.
  • Nature, Vol. 317, Issue 6038
  • DOI: 10.1038/317613a0

Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
journal, November 2016

  • Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13428

Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems
journal, June 2014


Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe
journal, December 2013

  • Peñuelas, Josep; Poulter, Benjamin; Sardans, Jordi
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3934

Recent trends and drivers of regional sources and sinks of carbon dioxide
journal, January 2015


Ecosystem responses to elevated CO 2 governed by plant-soil interactions and the cost of nitrogen acquisition
journal, November 2017

  • Terrer, César; Vicca, Sara; Stocker, Benjamin D.
  • New Phytologist, Vol. 217, Issue 2
  • DOI: 10.1111/nph.14872

Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands
journal, September 2014

  • Wang, Chao; Wang, Xiaobo; Liu, Dongwei
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5799

Effect of increasing CO 2 on the terrestrial carbon cycle
journal, December 2014

  • Schimel, David; Stephens, Britton B.; Fisher, Joshua B.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 2
  • DOI: 10.1073/pnas.1407302112

The Meta-Analysis of Response Ratios in Experimental Ecology
journal, June 1999


Continental-scale patterns of canopy tree composition and function across Amazonia
journal, September 2006

  • ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.
  • Nature, Vol. 443, Issue 7110
  • DOI: 10.1038/nature05134

Large historical growth in global terrestrial gross primary production
journal, April 2017

  • Campbell, J. E.; Berry, J. A.; Seibt, U.
  • Nature, Vol. 544, Issue 7648
  • DOI: 10.1038/nature22030

CO2 enhancement of forest productivity constrained by limited nitrogen availability
journal, October 2010

  • Norby, R. J.; Warren, J. M.; Iversen, C. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 45
  • DOI: 10.1073/pnas.1006463107

Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation
journal, June 2008

  • Zomer, Robert J.; Trabucco, Antonio; Bossio, Deborah A.
  • Agriculture, Ecosystems & Environment, Vol. 126, Issue 1-2
  • DOI: 10.1016/j.agee.2008.01.014

Greening of the Earth and its drivers
journal, April 2016

  • Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.
  • Nature Climate Change, Vol. 6, Issue 8
  • DOI: 10.1038/nclimate3004

Multiple imputation in health-are databases: An overview and some applications
journal, April 1991


Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2
journal, November 2002


Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS
journal, May 2013

  • Harris, I.; Jones, P. D.; Osborn, T. J.
  • International Journal of Climatology, Vol. 34, Issue 3
  • DOI: 10.1002/joc.3711

Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO 2 Concentration
journal, July 2011

  • Cernusak, Lucas A.; Winter, Klaus; Martínez, Carlos
  • Plant Physiology, Vol. 157, Issue 1
  • DOI: 10.1104/pp.111.182436

Future productivity and carbon storage limited by terrestrial nutrient availability
journal, April 2015

  • Wieder, William R.; Cleveland, Cory C.; Smith, W. Kolby
  • Nature Geoscience, Vol. 8, Issue 6
  • DOI: 10.1038/ngeo2413

Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis
journal, November 2016

  • Maherali, Hafiz; Oberle, Brad; Stevens, Peter F.
  • The American Naturalist, Vol. 188, Issue 5
  • DOI: 10.1086/688675

Global mycorrhizal plant distribution linked to terrestrial carbon stocks
journal, November 2019

  • Soudzilovskaia, Nadejda A.; van Bodegom, Peter M.; Terrer, César
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-13019-2

Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity
journal, September 2016

  • De Kauwe, Martin G.; Keenan, Trevor F.; Medlyn, Belinda E.
  • Nature Climate Change, Vol. 6, Issue 10
  • DOI: 10.1038/nclimate3105

Diagnostic performance of MRI for HCC according to contrast agent type: a systematic review and meta-analysis
journal, November 2020


Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands
journal, May 2021


Drought-modulated allometric patterns of trees in semi-arid forests
journal, July 2020


Global Carbon Budget 2018
text, January 2018

  • Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre
  • Copernicus Publications
  • DOI: 10.7892/boris.141541

MetaForest: Exploring heterogeneity in meta-analysis using random forests
text, January 2017


Recent trends and drivers of regional sources and sinks of carbon dioxide
text, January 2015


Greening of the Earth and its drivers
text, January 2016

  • Koven, Charles; Xiao, Zhiqiang; Zhu, Zaichun
  • Nature Publishing Group
  • DOI: 10.7892/boris.89569

Works referencing / citing this record:

Global mycorrhizal plant distribution linked to terrestrial carbon stocks
journal, November 2019

  • Soudzilovskaia, Nadejda A.; van Bodegom, Peter M.; Terrer, César
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-13019-2

Increased global nitrous oxide emissions from streams and rivers in the Anthropocene
journal, December 2019


Global patterns of terrestrial nitrogen and phosphorus limitation
journal, February 2020


Asynchronous carbon sink saturation in African and Amazonian tropical forests
journal, March 2020


Characteristics, drivers and feedbacks of global greening
journal, December 2019

  • Piao, Shilong; Wang, Xuhui; Park, Taejin
  • Nature Reviews Earth & Environment, Vol. 1, Issue 1
  • DOI: 10.1038/s43017-019-0001-x

Towards comparable assessment of the soil nutrient status across scales—Review and development of nutrient metrics
journal, September 2019

  • Van Sundert, Kevin; Radujković, Dajana; Cools, Nathalie
  • Global Change Biology, Vol. 26, Issue 2
  • DOI: 10.1111/gcb.14802

Changes in soil greenhouse gas fluxes by land use change from primary forest
journal, February 2020

  • Han, Mengguang; Zhu, Biao
  • Global Change Biology, Vol. 26, Issue 4
  • DOI: 10.1111/gcb.14993

Recent CO 2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature
journal, May 2020

  • Zuidema, Pieter A.; Heinrich, Ingo; Rahman, Mizanur
  • Global Change Biology, Vol. 26, Issue 7
  • DOI: 10.1111/gcb.15092

Plant‐mediated effects of elevated CO 2 and rice cultivars on soil carbon dynamics in a paddy soil
journal, December 2019

  • Hu, Zhengkun; Chen, Xiaoyun; Yao, Junneng
  • New Phytologist, Vol. 225, Issue 6
  • DOI: 10.1111/nph.16298

Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems
journal, November 2019

  • Pugnaire, Francisco I.; Morillo, José A.; Peñuelas, Josep
  • Science Advances, Vol. 5, Issue 11
  • DOI: 10.1126/sciadv.aaz1834

Global mycorrhizal plant distribution linked to terrestrial carbon stocks
journal, November 2019

  • Soudzilovskaia, Nadejda A.; van Bodegom, Peter M.; Terrer, César
  • Nature Communications, Vol. 10, Issue 1
  • DOI: 10.1038/s41467-019-13019-2

Enhancing natural cycles in agro-ecosystems to boost plant carbon capture and soil storage
journal, May 2021

  • Buss, Wolfram; Yeates, Kirsty; Rohling, Eelco J.
  • Oxford Open Climate Change, Vol. 1, Issue 1
  • DOI: 10.1093/oxfclm/kgab006

CoupModel (v6.0): an ecosystem model for coupled phosphorus, nitrogen, and carbon dynamics – evaluated against empirical data from a climatic and fertility gradient in Sweden
journal, February 2021

  • He, Hongxing; Jansson, Per-Erik; Gärdenäs, Annemieke I.
  • Geoscientific Model Development, Vol. 14, Issue 2
  • DOI: 10.5194/gmd-14-735-2021

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.