DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction

Abstract

Wide-bandgap (~1.7-1.8 eV) perovskite solar cells have attracted substantial research interest in recent years due to their great potential to fabricate efficient tandem solar cells via combining with a lower bandgap (1.1-1.3 eV) absorber (e.g., Si, copper indium gallium diselenide, or low-bandgap perovskite). However, wide-bandgap perovskite solar cells usually suffer from large open circuit voltage (Voc) deficits caused by small grain sizes and photoinduced phase segregation. Here, we demonstrate that in addition to large grain sizes and passivated grain boundaries, controlling interface properties is critical for achieving high Voc's in the inverted wide-bandgap perovskite solar cells. We adopt guanidinium bromide solution to tune the effective doping and electronic properties of the surface layer of perovskite thin films, leading to the formation of a graded perovskite homojunction. The enhanced electric field at the perovskite homojunction is revealed by Kelvin probe force microscopy measurements. This advance enables an increase in the Voc of the inverted perovskite solar cells from an initial 1.12 V to 1.24 V. With the optimization of the device fabrication process, the champion inverted wide-bandgap cell delivers a power conversion efficiency of 18.19% and sustains more than 72% of its initial efficiency after continuous illumination for 70 h withoutmore » encapsulation. Additionally, a semitransparent device with an indium tin oxide back contact retains more than 88% of its initial efficiency after 100 h maximum power point tracking.« less

Authors:
 [1];  [2];  [3];  [4];  [2];  [2];  [5];  [5];  [1];  [2];  [3];  [3];  [3];  [5];  [2]
  1. Univ. of Toledo, OH (United States); Wuhan Univ. (China)
  2. Univ. of Toledo, OH (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. Univ. of Toledo, OH (United States); Nanchang Univ. (China)
  5. Wuhan Univ. (China)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S), SunShot Initiative; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1512681
Alternate Identifier(s):
OSTI ID: 1637196
Report Number(s):
NREL/JA-5K00-73656
Journal ID: ISSN 2211-2855
Grant/Contract Number:  
AC36-08GO28308; FOA-0000990
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 61; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; guanidinium bromide; perovskite homojunction; wide-bandgap perovskite solar cells

Citation Formats

Chen, Cong, Song, Zhaoning, Xiao, Chuanxiao, Zhao, Dewei, Shrestha, Niraj, Li, Chongwen, Yang, Guang, Yao, Fang, Zheng, Xiaolu, Ellingson, Randy J., Jiang, Chun Sheng, Al-Jassim, Mowafak M, Zhu, Kai, Fang, Guojia, and Yan, Yanfa. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. United States: N. p., 2019. Web. doi:10.1016/j.nanoen.2019.04.069.
Chen, Cong, Song, Zhaoning, Xiao, Chuanxiao, Zhao, Dewei, Shrestha, Niraj, Li, Chongwen, Yang, Guang, Yao, Fang, Zheng, Xiaolu, Ellingson, Randy J., Jiang, Chun Sheng, Al-Jassim, Mowafak M, Zhu, Kai, Fang, Guojia, & Yan, Yanfa. Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. United States. https://doi.org/10.1016/j.nanoen.2019.04.069
Chen, Cong, Song, Zhaoning, Xiao, Chuanxiao, Zhao, Dewei, Shrestha, Niraj, Li, Chongwen, Yang, Guang, Yao, Fang, Zheng, Xiaolu, Ellingson, Randy J., Jiang, Chun Sheng, Al-Jassim, Mowafak M, Zhu, Kai, Fang, Guojia, and Yan, Yanfa. Fri . "Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction". United States. https://doi.org/10.1016/j.nanoen.2019.04.069. https://www.osti.gov/servlets/purl/1512681.
@article{osti_1512681,
title = {Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction},
author = {Chen, Cong and Song, Zhaoning and Xiao, Chuanxiao and Zhao, Dewei and Shrestha, Niraj and Li, Chongwen and Yang, Guang and Yao, Fang and Zheng, Xiaolu and Ellingson, Randy J. and Jiang, Chun Sheng and Al-Jassim, Mowafak M and Zhu, Kai and Fang, Guojia and Yan, Yanfa},
abstractNote = {Wide-bandgap (~1.7-1.8 eV) perovskite solar cells have attracted substantial research interest in recent years due to their great potential to fabricate efficient tandem solar cells via combining with a lower bandgap (1.1-1.3 eV) absorber (e.g., Si, copper indium gallium diselenide, or low-bandgap perovskite). However, wide-bandgap perovskite solar cells usually suffer from large open circuit voltage (Voc) deficits caused by small grain sizes and photoinduced phase segregation. Here, we demonstrate that in addition to large grain sizes and passivated grain boundaries, controlling interface properties is critical for achieving high Voc's in the inverted wide-bandgap perovskite solar cells. We adopt guanidinium bromide solution to tune the effective doping and electronic properties of the surface layer of perovskite thin films, leading to the formation of a graded perovskite homojunction. The enhanced electric field at the perovskite homojunction is revealed by Kelvin probe force microscopy measurements. This advance enables an increase in the Voc of the inverted perovskite solar cells from an initial 1.12 V to 1.24 V. With the optimization of the device fabrication process, the champion inverted wide-bandgap cell delivers a power conversion efficiency of 18.19% and sustains more than 72% of its initial efficiency after continuous illumination for 70 h without encapsulation. Additionally, a semitransparent device with an indium tin oxide back contact retains more than 88% of its initial efficiency after 100 h maximum power point tracking.},
doi = {10.1016/j.nanoen.2019.04.069},
journal = {Nano Energy},
number = C,
volume = 61,
place = {United States},
year = {Fri Apr 19 00:00:00 EDT 2019},
month = {Fri Apr 19 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 110 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
journal, February 2017

  • Bush, Kevin A.; Palmstrom, Axel F.; Yu, Zhengshan J.
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.9

Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
journal, June 2018


Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite-CIGSe Tandem Solar Cells
journal, September 2018

  • Wang, Yajie; Wenisch, Robert; Schlatmann, Rutger
  • Advanced Energy Materials, Vol. 8, Issue 30
  • DOI: 10.1002/aenm.201801692

Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity
journal, January 2018

  • Shen, Heping; Duong, The; Peng, Jun
  • Energy & Environmental Science, Vol. 11, Issue 2
  • DOI: 10.1039/C7EE02627G

High-performance perovskite/Cu(In,Ga)Se 2 monolithic tandem solar cells
journal, August 2018


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers
journal, November 2018


Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells
journal, January 2018

  • Leijtens, Tomas; Prasanna, Rohit; Bush, Kevin A.
  • Sustainable Energy & Fuels, Vol. 2, Issue 11
  • DOI: 10.1039/C8SE00314A

Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%
journal, January 2018


Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage
journal, July 2017

  • Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok
  • Advanced Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adma.201702140

Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells
journal, February 2019

  • Wang, Changlei; Song, Zhaoning; Li, Chongwen
  • Advanced Functional Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adfm.201808801

Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration
journal, January 2017

  • Celik, Ilke; Phillips, Adam B.; Song, Zhaoning
  • Energy & Environmental Science, Vol. 10, Issue 9
  • DOI: 10.1039/C7EE01650F

Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors
journal, July 2018


Metal halide perovskite tandem and multiple-junction photovoltaics
journal, November 2017

  • Eperon, Giles E.; Hörantner, Maximilian T.; Snaith, Henry J.
  • Nature Reviews Chemistry, Vol. 1, Issue 12
  • DOI: 10.1038/s41570-017-0095

Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit
journal, January 2019


Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations
journal, June 2017


Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells
journal, November 2018

  • Li, Chongwen; Song, Zhaoning; Zhao, Dewei
  • Advanced Energy Materials, Vol. 9, Issue 3
  • DOI: 10.1002/aenm.201803135

Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells
journal, December 2018


Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites
journal, February 2018

  • Kim, Junghwan; Saidaminov, Makhsud I.; Tan, Hairen
  • Advanced Materials, Vol. 30, Issue 13
  • DOI: 10.1002/adma.201706275

Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics
journal, May 2018


A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites
journal, October 2018


Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution
journal, November 2016


Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation
journal, June 2016


Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells
journal, April 2017


Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
journal, May 2017


Benzylamine-Treated Wide-Bandgap Perovskite with High Thermal-Photostability and Photovoltaic Performance
journal, September 2017


Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
journal, August 2018


Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy
journal, July 2018


High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2
journal, August 2018


Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells
journal, May 2016

  • Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei
  • Advanced Materials, Vol. 28, Issue 26
  • DOI: 10.1002/adma.201600594

Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives
journal, October 2016


Effective control of crystal grain size in CH 3 NH 3 PbI 3 perovskite solar cells with a pseudohalide Pb(SCN) 2 additive
journal, January 2016

  • Kim, Mi Kyung; Jeon, Taewoo; Park, Hyung Il
  • CrystEngComm, Vol. 18, Issue 32
  • DOI: 10.1039/C6CE00842A

High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors
journal, January 2015

  • Roldán-Carmona, C.; Gratia, P.; Zimmermann, I.
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE02555A

Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement
journal, August 2014


Microstructures of Organometal Trihalide Perovskites for Solar Cells: Their Evolution from Solutions and Characterization
journal, November 2015

  • Zhou, Yuanyuan; Game, Onkar S.; Pang, Shuping
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b01843

Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency
journal, April 2018

  • Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.
  • Nature Photonics, Vol. 12, Issue 6
  • DOI: 10.1038/s41566-018-0154-z

Junction Quality of SnO 2 -Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling
journal, October 2017

  • Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 44
  • DOI: 10.1021/acsami.7b08582

Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells
journal, May 2017

  • Wang, Changlei; Xiao, Chuanxiao; Yu, Yue
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201700414

Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
journal, June 2018


Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells
journal, January 2018


Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?
journal, January 2016

  • Zhao, Jingjing; Zheng, Xiaopeng; Deng, Yehao
  • Energy & Environmental Science, Vol. 9, Issue 12
  • DOI: 10.1039/C6EE02980A

Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes
journal, July 2015

  • Kato, Yuichi; Ono, Luis K.; Lee, Michael V.
  • Advanced Materials Interfaces, Vol. 2, Issue 13
  • DOI: 10.1002/admi.201500195

Works referencing / citing this record:

New Strategies for Defect Passivation in High‐Efficiency Perovskite Solar Cells
journal, April 2020

  • Akin, Seckin; Arora, Neha; Zakeeruddin, Shaik M.
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201903090

Light Management in Monolithic Perovskite/Silicon Tandem Solar Cells
journal, August 2019


Progress of Surface Science Studies on ABX 3 ‐Based Metal Halide Perovskite Solar Cells
journal, April 2020

  • Qiu, Longbin; He, Sisi; Ono, Luis K.
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201902726

A Review on Additives for Halide Perovskite Solar Cells
journal, April 2020

  • Liu, Shuang; Guan, Yanjun; Sheng, Yusong
  • Advanced Energy Materials, Vol. 10, Issue 13
  • DOI: 10.1002/aenm.201902492

Emerging Conductive Atomic Force Microscopy for Metal Halide Perovskite Materials and Solar Cells
journal, March 2020

  • Si, Haonan; Zhang, Suicai; Ma, Shuangfei
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903922

Reduced open-circuit voltage loss for highly efficient low-bandgap perovskite solar cells via suppression of silver diffusion
journal, January 2019

  • Liu, Meiyue; Chen, Ziming; Yang, Yongchao
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta04366g

New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells
text, January 2020

  • Akin, S.; Arora, Neha; Zakeeruddin, Sm
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47739