DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells

Abstract

Abstract The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells.

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [2];  [2];  [1];  [1];  [2];  [1]
  1. Univ. of Toledo, OH (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S). SunShot Initiative; USDOE
OSTI Identifier:
1487330
Alternate Identifier(s):
OSTI ID: 1483438
Report Number(s):
NREL/JA-5K00-72548
Journal ID: ISSN 1614-6832
Grant/Contract Number:  
AC36-08GO28308; FOA‐0000990; DE‐FOA‐0000990; DE‐AC36‐08‐GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 2018; Journal Issue: none; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; dark saturation current; grain boundary passivation; low-bandgap perovskites; perovskite solar cells

Citation Formats

Li, Chongwen, Song, Zhaoning, Zhao, Dewei, Xiao, Chuanxiao, Subedi, Biwas, Shrestha, Niraj, Junda, Maxwell M., Wang, Changlei, Jiang, Chun-Sheng, Al-Jassim, Mowafak, Ellingson, Randy J., Podraza, Nikolas J., Zhu, Kai, and Yan, Yanfa. Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells. United States: N. p., 2018. Web. doi:10.1002/aenm.201803135.
Li, Chongwen, Song, Zhaoning, Zhao, Dewei, Xiao, Chuanxiao, Subedi, Biwas, Shrestha, Niraj, Junda, Maxwell M., Wang, Changlei, Jiang, Chun-Sheng, Al-Jassim, Mowafak, Ellingson, Randy J., Podraza, Nikolas J., Zhu, Kai, & Yan, Yanfa. Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells. United States. https://doi.org/10.1002/aenm.201803135
Li, Chongwen, Song, Zhaoning, Zhao, Dewei, Xiao, Chuanxiao, Subedi, Biwas, Shrestha, Niraj, Junda, Maxwell M., Wang, Changlei, Jiang, Chun-Sheng, Al-Jassim, Mowafak, Ellingson, Randy J., Podraza, Nikolas J., Zhu, Kai, and Yan, Yanfa. Tue . "Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells". United States. https://doi.org/10.1002/aenm.201803135. https://www.osti.gov/servlets/purl/1487330.
@article{osti_1487330,
title = {Reducing Saturation-Current Density to Realize High-Efficiency Low-Bandgap Mixed Tin-Lead Halide Perovskite Solar Cells},
author = {Li, Chongwen and Song, Zhaoning and Zhao, Dewei and Xiao, Chuanxiao and Subedi, Biwas and Shrestha, Niraj and Junda, Maxwell M. and Wang, Changlei and Jiang, Chun-Sheng and Al-Jassim, Mowafak and Ellingson, Randy J. and Podraza, Nikolas J. and Zhu, Kai and Yan, Yanfa},
abstractNote = {Abstract The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells.},
doi = {10.1002/aenm.201803135},
journal = {Advanced Energy Materials},
number = none,
volume = 2018,
place = {United States},
year = {Tue Nov 27 00:00:00 EST 2018},
month = {Tue Nov 27 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 226 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films
journal, July 2017

  • Ghimire, Kiran; Zhao, Dewei; Yan, Yanfa
  • AIP Advances, Vol. 7, Issue 7
  • DOI: 10.1063/1.4994211

Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage
journal, July 2017

  • Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok
  • Advanced Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adma.201702140

Rotating-compensator multichannel ellipsometry: Applications for real time Stokes vector spectroscopy of thin film growth
journal, April 1998

  • Lee, Joungchel; Rovira, P. I.; An, Ilsin
  • Review of Scientific Instruments, Vol. 69, Issue 4
  • DOI: 10.1063/1.1148844

Understanding the physical properties of hybrid perovskites for photovoltaic applications
journal, July 2017


Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%
journal, August 2016


Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering
journal, September 2016


Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%
journal, January 2018


Metal halide perovskite tandem and multiple-junction photovoltaics
journal, November 2017

  • Eperon, Giles E.; Hörantner, Maximilian T.; Snaith, Henry J.
  • Nature Reviews Chemistry, Vol. 1, Issue 12
  • DOI: 10.1038/s41570-017-0095

Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells
journal, April 2017


Origin of Pronounced Nonlinear Band Gap Behavior in Lead–Tin Hybrid Perovskite Alloys
journal, May 2018


Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
journal, February 2014

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • Applied Physics Letters, Vol. 104, Issue 6
  • DOI: 10.1063/1.4864778

High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer
journal, December 2014

  • Zhao, Dewei; Sexton, Michael; Park, Hye-Yun
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401855

Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology
journal, October 2017


Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance
journal, March 2014

  • De Wolf, Stefaan; Holovsky, Jakub; Moon, Soo-Jin
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 6
  • DOI: 10.1021/jz500279b

Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells
journal, March 2017


Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Ideal-Bandgap Perovskite Solar Cells
journal, July 2017

  • Zong, Yingxia; Wang, Ning; Zhang, Lin
  • Angewandte Chemie International Edition, Vol. 56, Issue 41
  • DOI: 10.1002/anie.201705965

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells
journal, January 2016

  • Wang, Changlei; Zhao, Dewei; Grice, Corey R.
  • Journal of Materials Chemistry A, Vol. 4, Issue 31
  • DOI: 10.1039/C6TA04503K

Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
journal, May 2017


Colloidally prepared La-doped BaSnO 3 electrodes for efficient, photostable perovskite solar cells
journal, March 2017


Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites
journal, August 2018


Temperature dependence of solar cell performance—an analysis
journal, June 2012


Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide
journal, September 2016

  • Liao, Weiqiang; Zhao, Dewei; Yu, Yue
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b08337

High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics
journal, November 2016

  • Zhao, Baodan; Abdi-Jalebi, Mojtaba; Tabachnyk, Maxim
  • Advanced Materials, Vol. 29, Issue 2
  • DOI: 10.1002/adma.201604744

Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory
journal, February 2015

  • Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
  • The Journal of Physical Chemistry C, Vol. 119, Issue 10
  • DOI: 10.1021/jp512077m

A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques
journal, January 2017

  • Song, Zhaoning; McElvany, Chad L.; Phillips, Adam B.
  • Energy & Environmental Science, Vol. 10, Issue 6
  • DOI: 10.1039/C7EE00757D

Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics
journal, August 2017

  • Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b04981

Highly Efficient 17.6% Tin–Lead Mixed Perovskite Solar Cells Realized through Spike Structure
journal, April 2018


Efficient and stable solution-processed planar perovskite solar cells via contact passivation
journal, February 2017


Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells
journal, November 2017

  • Yang, Zhibin; Rajagopal, Adharsh; Jen, Alex K. -Y.
  • Advanced Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adma.201704418

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Perovskite-perovskite tandem photovoltaics with optimized band gaps
journal, October 2016


Photothermal deflection spectroscopy and detection
journal, January 1981

  • Jackson, W. B.; Amer, N. M.; Boccara, A. C.
  • Applied Optics, Vol. 20, Issue 8
  • DOI: 10.1364/AO.20.001333

Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells
journal, May 2014

  • Hao, Feng; Stoumpos, Constantinos C.; Chang, Robert P. H.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja5033259

Preparation of Single-Phase Films of CH 3 NH 3 Pb(I 1– x Br x ) 3 with Sharp Optical Band Edges
journal, July 2014

  • Sadhanala, Aditya; Deschler, Felix; Thomas, Tudor H.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz501332v

ABX3 Perovskites for Tandem Solar Cells
journal, December 2017


Interstitial Occupancy by Extrinsic Alkali Cations in Perovskites and Its Impact on Ion Migration
journal, May 2018


Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%
journal, August 2012

  • Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00591

High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics
text, January 2017

  • Zhao, Baodan; Abdi-Jalebi, M.; Tabachnyk, M.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.6563

Homogenous Alloys of Formamidinium Lead Triiodide and Cesium Tin Triiodide for Efficient Ideal‐Bandgap Perovskite Solar Cells
journal, July 2017


Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
text, January 2017

  • B., Chen,; Y., Shao,; J., Huang,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/50rf-ma51

Understanding the physical properties of hybrid perovskites for photovoltaic applications
text, January 2017

  • Y., Shao,; J., Huang,; Y., Yan,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/r8v8-0t85

Perovskite-perovskite tandem photovoltaics with optimized bandgaps
text, January 2016


Works referencing / citing this record:

Low‐Bandgap Mixed Tin‐Lead Perovskites and Their Applications in All‐Perovskite Tandem Solar Cells
journal, February 2019

  • Wang, Changlei; Song, Zhaoning; Li, Chongwen
  • Advanced Functional Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adfm.201808801

Grain Boundary and Interface Passivation with Core–Shell Au@CdS Nanospheres for High‐Efficiency Perovskite Solar Cells
journal, February 2020

  • Qin, Pingli; Wu, Tong; Wang, Zhengchun
  • Advanced Functional Materials, Vol. 30, Issue 12
  • DOI: 10.1002/adfm.201908408

Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer
journal, March 2020


Vacuum‐Assisted Growth of Low‐Bandgap Thin Films (FA 0.8 MA 0.2 Sn 0.5 Pb 0.5 I 3 ) for All‐Perovskite Tandem Solar Cells
journal, December 2019

  • Abdollahi Nejand, Bahram; Hossain, Ihteaz M.; Jakoby, Marius
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201902583

Realizing High Efficiency over 20% of Low‐Bandgap Pb–Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn 4+
journal, December 2019


FAPb 0.5 Sn 0.5 I 3 : A Narrow Bandgap Perovskite Synthesized through Evaporation Methods for Solar Cell Applications
journal, August 2019


Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability
journal, January 2020


Recent progress on highly sensitive perovskite photodetectors
journal, January 2019

  • Miao, Jianli; Zhang, Fujun
  • Journal of Materials Chemistry C, Vol. 7, Issue 7
  • DOI: 10.1039/c8tc06089d

Pyrrole: an additive for improving the efficiency and stability of perovskite solar cells
journal, January 2019

  • Liu, Xuping; Wu, Jihuai; Guo, Qiyao
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta02916h

On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites
journal, January 2019

  • Rajagopal, Adharsh; Stoddard, Ryan J.; Hillhouse, Hugh W.
  • Journal of Materials Chemistry A, Vol. 7, Issue 27
  • DOI: 10.1039/c9ta05308e

CoBr 2 -doping-induced efficiency improvement of CsPbBr 3 planar perovskite solar cells
journal, January 2020

  • Wang, Deng; Li, Wenjing; Du, Zhenbo
  • Journal of Materials Chemistry C, Vol. 8, Issue 5
  • DOI: 10.1039/c9tc05679c

Design of BCP buffer layer for inverted perovskite solar cells using ideal factor
journal, March 2019

  • Shibayama, Naoyuki; Kanda, Hiroyuki; Kim, Tae Woong
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5087796

Wide-bandgap, low-bandgap, and tandem perovskite solar cells
journal, July 2019

  • Song, Zhaoning; Chen, Cong; Li, Chongwen
  • Semiconductor Science and Technology, Vol. 34, Issue 9
  • DOI: 10.1088/1361-6641/ab27f7

High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO 2 Mesoporous Scaffold
journal, October 2019


FAPb 0.5 Sn 0.5 I 3 : A Narrow Bandgap Perovskite Synthesized through Evaporation Methods for Solar Cell Applications
journal, August 2019


Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability
journal, January 2020


High-Performance and Hysteresis-Free Perovskite Solar Cells Based on Rare-Earth-Doped SnO 2 Mesoporous Scaffold
journal, October 2019