DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A lithium–oxygen battery with a long cycle life in an air-like atmosphere [Lithium-oxygen batteries with long cycle life in a realistic air atmosphere]

Abstract

Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/di methyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. Furthermore this demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium ion batteries.

Authors:
 [1];  [2];  [2];  [3];  [2];  [2];  [3];  [3];  [2];  [2];  [2];  [2];  [4];  [3];  [2];  [2];  [3];  [2]
  1. Univ. of Illinois at Chicago, Chicago, IL (United States); Illinois Inst. of Technology, Chicago, IL (United States)
  2. Univ. of Illinois at Chicago, Chicago, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. California State Univ., Northridge, CA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Electrochemical Energy Science (CEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Science Foundation (NSF); Univ. of Chicago, Materials Research Science & Engineering Center (MRSEC); USDOE Office of Science (SC), Basic Energy Sciences (BES). Joint Center for Energy Storage Research (JCESR)
OSTI Identifier:
1508362
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 555; Journal Issue: 7697; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Asadi, Mohammad, Sayahpour, Baharak, Abbasi, Pedram, Ngo, Anh T., Karis, Klas, Jokisaari, Jacob R., Liu, Cong, Narayanan, Badri, Gerard, Marc, Yasaei, Poya, Hu, Xuan, Mukherjee, Arijita, Lau, Kah Chun, Assary, Rajeev S., Khalili-Araghi, Fatemeh, Klie, Robert F., Curtiss, Larry A., and Salehi-Khojin, Amin. A lithium–oxygen battery with a long cycle life in an air-like atmosphere [Lithium-oxygen batteries with long cycle life in a realistic air atmosphere]. United States: N. p., 2018. Web. doi:10.1038/nature25984.
Asadi, Mohammad, Sayahpour, Baharak, Abbasi, Pedram, Ngo, Anh T., Karis, Klas, Jokisaari, Jacob R., Liu, Cong, Narayanan, Badri, Gerard, Marc, Yasaei, Poya, Hu, Xuan, Mukherjee, Arijita, Lau, Kah Chun, Assary, Rajeev S., Khalili-Araghi, Fatemeh, Klie, Robert F., Curtiss, Larry A., & Salehi-Khojin, Amin. A lithium–oxygen battery with a long cycle life in an air-like atmosphere [Lithium-oxygen batteries with long cycle life in a realistic air atmosphere]. United States. https://doi.org/10.1038/nature25984
Asadi, Mohammad, Sayahpour, Baharak, Abbasi, Pedram, Ngo, Anh T., Karis, Klas, Jokisaari, Jacob R., Liu, Cong, Narayanan, Badri, Gerard, Marc, Yasaei, Poya, Hu, Xuan, Mukherjee, Arijita, Lau, Kah Chun, Assary, Rajeev S., Khalili-Araghi, Fatemeh, Klie, Robert F., Curtiss, Larry A., and Salehi-Khojin, Amin. Thu . "A lithium–oxygen battery with a long cycle life in an air-like atmosphere [Lithium-oxygen batteries with long cycle life in a realistic air atmosphere]". United States. https://doi.org/10.1038/nature25984. https://www.osti.gov/servlets/purl/1508362.
@article{osti_1508362,
title = {A lithium–oxygen battery with a long cycle life in an air-like atmosphere [Lithium-oxygen batteries with long cycle life in a realistic air atmosphere]},
author = {Asadi, Mohammad and Sayahpour, Baharak and Abbasi, Pedram and Ngo, Anh T. and Karis, Klas and Jokisaari, Jacob R. and Liu, Cong and Narayanan, Badri and Gerard, Marc and Yasaei, Poya and Hu, Xuan and Mukherjee, Arijita and Lau, Kah Chun and Assary, Rajeev S. and Khalili-Araghi, Fatemeh and Klie, Robert F. and Curtiss, Larry A. and Salehi-Khojin, Amin},
abstractNote = {Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/di methyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. Furthermore this demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium ion batteries.},
doi = {10.1038/nature25984},
journal = {Nature (London)},
number = 7697,
volume = 555,
place = {United States},
year = {Thu Mar 22 00:00:00 EDT 2018},
month = {Thu Mar 22 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 366 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries
journal, January 2013

  • Du, Peng; Lu, Jun; Lau, Kah Chun
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 15
  • DOI: 10.1039/c3cp50500f

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


Li Ion Diffusion Mechanisms in Bulk Monoclinic Li 2 CO 3 Crystals from Density Functional Studies
journal, October 2010

  • Iddir, H.; Curtiss, L. A.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 48
  • DOI: 10.1021/jp1086569

Investigation of SEI Layer Formation in Conversion Iron Fluoride Cathodes by Combined STEM/EELS and XPS
journal, April 2015

  • Sina, M.; Thorpe, R.; Rangan, S.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 18
  • DOI: 10.1021/acs.jpcc.5b02058

Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge
journal, January 2013

  • Adams, Brian D.; Radtke, Claudio; Black, Robert
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40697k

Computational Studies of Solubilities of LiO 2 and Li 2 O 2 in Aprotic Solvents
journal, January 2017

  • Cheng, Lei; Redfern, Paul; Lau, Kah Chun
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0721711jes

Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces
journal, March 2016

  • Leung, Kevin; Soto, Fernando; Hankins, Kie
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.5b11719

Quantifying the promise of lithium–air batteries for electric vehicles
journal, January 2014

  • Gallagher, Kevin G.; Goebel, Steven; Greszler, Thomas
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43870h

Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure
journal, November 2011

  • Lau, Kah Chun; Curtiss, Larry A.; Greeley, Jeffrey
  • The Journal of Physical Chemistry C, Vol. 115, Issue 47, p. 23625-23633
  • DOI: 10.1021/jp206796h

Structural properties of Li2CO3–BaCO3 system derived from IR and Raman spectroscopy
journal, September 2001


Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li 2 O 2 for Li-O 2 Batteries
journal, September 2014

  • Xiao, Dongdong; Dong, Shanmu; Guan, Jing
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400664

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


GROMACS: A message-passing parallel molecular dynamics implementation
journal, September 1995

  • Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R.
  • Computer Physics Communications, Vol. 91, Issue 1-3
  • DOI: 10.1016/0010-4655(95)00042-E

In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
journal, October 2012

  • Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00715

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set
journal, July 2016

  • Horta, Bruno A. C.; Merz, Pascal T.; Fuchs, Patrick F. J.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 8
  • DOI: 10.1021/acs.jctc.6b00187

Rational identification and characterisation of peptide ligands for targeting polysialic acid
journal, May 2020

  • Shastry, Divya G.; Irudayanathan, Flaviyan Jerome; Williams, Asher
  • Scientific Reports, Vol. 10, Issue 1
  • DOI: 10.1038/s41598-020-64088-z

Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries
journal, January 2016


The missing term in effective pair potentials
journal, November 1987

  • Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.
  • The Journal of Physical Chemistry, Vol. 91, Issue 24
  • DOI: 10.1021/j100308a038

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

A Critical Review of Li∕Air Batteries
journal, January 2012

  • Christensen, Jake; Albertus, Paul; Sanchez-Carrera, Roel S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 2, p. R1-R30
  • DOI: 10.1149/2.086202jes

A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries
journal, December 2015

  • Welland, Michael J.; Lau, Kah Chun; Redfern, Paul C.
  • The Journal of Chemical Physics, Vol. 143, Issue 22
  • DOI: 10.1063/1.4936410

Critical aspects in the development of lithium–air batteries
journal, January 2013


The Lithium Air Battery
book, January 2014


Interaction Models for Water in Relation to Protein Hydration
book, January 1981

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Jerusalem Symposia on Quantum Chemistry and Biochemistry
  • DOI: 10.1007/978-94-015-7658-1_21

High-resolution X-ray luminescence extension imaging
journal, February 2021


A reversible long-life lithium–air battery in ambient air
journal, May 2013

  • Zhang, Tao; Zhou, Haoshen
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2855

From Lithium-Oxygen to Lithium-Air Batteries: Challenges and Opportunities
journal, February 2016

  • Geng, Dongsheng; Ding, Ning; Hor, T. S. Andy
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502164

Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K
journal, November 2001

  • Mark, Pekka; Nilsson, Lennart
  • The Journal of Physical Chemistry A, Vol. 105, Issue 43
  • DOI: 10.1021/jp003020w

A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
journal, August 2013

  • Lu, Jun; Lei, Yu; Lau, Kah Chun
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3383

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

An improved high-performance lithium–air battery
journal, June 2012

  • Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum
  • Nature Chemistry, Vol. 4, Issue 7
  • DOI: 10.1038/nchem.1376

Defect Thermodynamics and Diffusion Mechanisms in Li 2 CO 3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries
journal, March 2013

  • Shi, Siqi; Qi, Yue; Li, Hong
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp310591u

Stability of Li 2 CO 3 in cathode of lithium ion battery and its influence on electrochemical performance
journal, January 2016


A Synergistic System for Lithium-Oxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquid-Based Electrolyte
journal, February 2016

  • Wu, Shichao; Tang, Jing; Li, Fujun
  • Advanced Functional Materials, Vol. 26, Issue 19
  • DOI: 10.1002/adfm.201505420

Works referencing / citing this record:

Structure Design and Composition Engineering of Carbon‐Based Nanomaterials for Lithium Energy Storage
journal, March 2020

  • Geng, Hongya; Peng, Yan; Qu, Liangti
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903030

Commercialization of Lithium Battery Technologies for Electric Vehicles
journal, June 2019

  • Zeng, Xiaoqiao; Li, Matthew; Abd El‐Hady, Deia
  • Advanced Energy Materials, Vol. 9, Issue 27
  • DOI: 10.1002/aenm.201900161

Fundamental Understanding of Water‐Induced Mechanisms in Li–O 2 Batteries: Recent Developments and Perspectives
journal, November 2018


Research Progress for the Development of Li-Air Batteries: Addressing Parasitic Reactions Arising from Air Composition
journal, June 2018

  • Zhang, Xueping; Mu, Xiaowei; Yang, Sixie
  • Energy & Environmental Materials, Vol. 1, Issue 2
  • DOI: 10.1002/eem2.12008

The rise of two-dimensional MoS2 for catalysis
journal, July 2018


A Versatile Halide Ester Enabling Li‐Anode Stability and a High Rate Capability in Lithium–Oxygen Batteries
journal, February 2019

  • Wang, Di; Zhang, Fan; He, Ping
  • Angewandte Chemie International Edition, Vol. 58, Issue 8
  • DOI: 10.1002/anie.201813009

Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions
journal, February 2019

  • Shu, Chaozhu; Wang, Jiazhao; Long, Jianping
  • Advanced Materials, Vol. 31, Issue 15
  • DOI: 10.1002/adma.201804587

Nitrogen‐doped Porous Carbon Obtained from Silk Cocoon for High Performance Li‐O 2 Batteries
journal, July 2019


Operando Neutron Depth Profiling to Determine the Spatial Distribution of Li in Li-ion Batteries
journal, July 2018


A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion
journal, October 2019


Drawing a Pencil-Trace Cathode for a High-Performance Polymer-Based Li-CO 2 Battery with Redox Mediator
journal, January 2019

  • Li, Jinli; Zhao, Huimin; Qi, Haocheng
  • Advanced Functional Materials, Vol. 29, Issue 11
  • DOI: 10.1002/adfm.201806863

Li–CO 2 and Na–CO 2 Batteries: Toward Greener and Sustainable Electrical Energy Storage
journal, September 2019


A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries
journal, February 2019


Stabilizing Lithium into Cross-Stacked Nanotube Sheets with an Ultra-High Specific Capacity for Lithium Oxygen Batteries
journal, January 2019

  • Ye, Lei; Liao, Meng; Sun, Hao
  • Angewandte Chemie International Edition, Vol. 58, Issue 8
  • DOI: 10.1002/anie.201814324

New Class of Electrocatalysts Based on 2D Transition Metal Dichalcogenides in Ionic Liquid
journal, November 2018

  • Majidi, Leily; Yasaei, Poya; Warburton, Robert E.
  • Advanced Materials, Vol. 31, Issue 4
  • DOI: 10.1002/adma.201804453

Air-Stable Lithium Spheres Produced by Electrochemical Plating
journal, August 2018

  • Yang, Tingting; Jia, Peng; Liu, Qiunan
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201807355

The design of hollow PdO–Co 3 O 4 nano-dodecahedrons with moderate catalytic activity for Li–O 2 batteries
journal, January 2019

  • Zhang, Yu; Ma, Jie; Yuan, Meng-Wei
  • Chemical Communications, Vol. 55, Issue 84
  • DOI: 10.1039/c9cc03294k

A Long‐Cycle‐Life Lithium–CO 2 Battery with Carbon Neutrality
journal, August 2019

  • Ahmadiparidari, Alireza; Warburton, Robert E.; Majidi, Leily
  • Advanced Materials, Vol. 31, Issue 40
  • DOI: 10.1002/adma.201902518

Safe Lithium‐Metal Anodes for Li−O 2 Batteries: From Fundamental Chemistry to Advanced Characterization and Effective Protection
journal, May 2019

  • Hong, Yan‐Shuai; Zhao, Chen‐Zi; Xiao, Ye
  • Batteries & Supercaps, Vol. 2, Issue 7
  • DOI: 10.1002/batt.201900031

Atomic‐Layer‐Deposited Amorphous MoS 2 for Durable and Flexible Li–O 2 Batteries
journal, May 2019


Strategies Toward Stable Nonaqueous Alkali Metal–O 2 Batteries
journal, May 2019


Improving the cyclability and capacity of Li–O 2 batteries via low rate pre-activation
journal, January 2019

  • Luo, Zhihong; Zhu, Guangbin; Guo, Lulu
  • Chemical Communications, Vol. 55, Issue 14
  • DOI: 10.1039/c8cc09935a

Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li–Air Batteries
journal, September 2019


Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li–O 2 battery
journal, January 2019

  • Deng, Han; Qiao, Yu; Zhang, Xueping
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta04946k

Promoting defective-Li 2 O 2 formation via Na doping for Li–O 2 batteries with low charge overpotentials
journal, January 2019

  • Lyu, Zhiyang; Wang, Tao; Guo, Rui
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta01606f

Highly Efficient Solar-Driven Carbon Dioxide Reduction on Molybdenum Disulfide Catalyst Using Choline Chloride-Based Electrolyte
journal, January 2019

  • Asadi, Mohammad; Motevaselian, Mohammad Hossein; Moradzadeh, Alireza
  • Advanced Energy Materials, Vol. 9, Issue 9
  • DOI: 10.1002/aenm.201803536

A Versatile Halide Ester Enabling Li-Anode Stability and a High Rate Capability in Lithium-Oxygen Batteries
journal, January 2019


TiC MXene High Energy Density Cathode for Lithium-Air Battery
journal, July 2018

  • Wang, Zhenyu; Chen, Xin; Shen, Fei
  • Advanced Theory and Simulations, Vol. 1, Issue 9
  • DOI: 10.1002/adts.201800059

The Marriage of the FeN 4 Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters
journal, September 2018


Defect Engineering on Electrode Materials for Rechargeable Batteries
journal, November 2019


3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li-O 2 Batteries
journal, November 2018

  • Lyu, Zhiyang; Lim, Gwendolyn J. H.; Guo, Rui
  • Advanced Functional Materials, Vol. 29, Issue 1
  • DOI: 10.1002/adfm.201806658

Stabilizing Lithium into Cross-Stacked Nanotube Sheets with an Ultra-High Specific Capacity for Lithium Oxygen Batteries
journal, January 2019


The surface passivation of Ge(100) and Ge(111) anodes in Ge–air batteries with different doping types and concentrations
journal, January 2019

  • Yu, Yingjian; Chen, Danshuo; Gao, Shaoshuai
  • RSC Advances, Vol. 9, Issue 68
  • DOI: 10.1039/c9ra06725f

An Extremely Simple Method for Protecting Lithium Anodes in Li-O 2 Batteries
journal, August 2018

  • Zhang, Xin; Zhang, Qinming; Wang, Xin-Gai
  • Angewandte Chemie International Edition, Vol. 57, Issue 39
  • DOI: 10.1002/anie.201807985

Lithium-air batteries: Challenges coexist with opportunities
journal, April 2019

  • Wang, Chengyi; Xie, Zhaojun; Zhou, Zhen
  • APL Materials, Vol. 7, Issue 4
  • DOI: 10.1063/1.5091444

Li‐N 2 Batteries: A Reversible Energy Storage System?
journal, October 2019

  • Zhang, Zhang; Wu, Shuangshuang; Yang, Chao
  • Angewandte Chemie, Vol. 131, Issue 49
  • DOI: 10.1002/ange.201911338

N-Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes
journal, May 2018

  • Zhang, Rui; Wen, Shuaiwei; Wang, Ning
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800914

Air-Stable Lithium Spheres Produced by Electrochemical Plating
journal, August 2018


Mechanistic Study Revealing the Role of the Br 3 /Br 2 Redox Couple in CO 2 ‐Assisted Li–O 2 Batteries
journal, January 2020

  • Marques Mota, Filipe; Kang, Jin‐Hyuk; Jung, Younguk
  • Advanced Energy Materials, Vol. 10, Issue 9
  • DOI: 10.1002/aenm.201903486

High‐Capacity and Long‐Cycle Lifetime Li−CO 2 /O 2 Battery Based on Dandelion‐like NiCo 2 O 4 Hollow Microspheres
journal, June 2019


Design strategies toward catalytic materials and cathode structures for emerging Li–CO 2 batteries
journal, January 2019

  • Hu, Anjun; Shu, Chaozhu; Xu, Chenxi
  • Journal of Materials Chemistry A, Vol. 7, Issue 38
  • DOI: 10.1039/c9ta06506g

Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study
journal, June 2018


FeOOH Nanocubes Anchored on Carbon Ribbons for Use in Li/O 2 Batteries
journal, February 2019


Li‐N 2 Batteries: A Reversible Energy Storage System?
journal, December 2019

  • Zhang, Zhang; Wu, Shuangshuang; Yang, Chao
  • Angewandte Chemie International Edition, Vol. 58, Issue 49
  • DOI: 10.1002/anie.201911338

Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

An Extremely Simple Method for Protecting Lithium Anodes in Li-O 2 Batteries
journal, August 2018


Hierarchical NiCo 2 S 4 @NiO Core–Shell Heterostructures as Catalytic Cathode for Long‐Life Li‐O 2 Batteries
journal, May 2019

  • Wang, Peng; Li, Caixia; Dong, Shihua
  • Advanced Energy Materials, Vol. 9, Issue 24
  • DOI: 10.1002/aenm.201900788

Elektrolyte für wiederaufladbare Lithium‐Luft‐Batterien
journal, December 2019


Protecting the Li-Metal Anode in a Li-O 2 Battery by using Boric Acid as an SEI-Forming Additive
journal, August 2018


Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review
journal, July 2018

  • Prauzek, Michal; Konecny, Jaromir; Borova, Monika
  • Sensors, Vol. 18, Issue 8
  • DOI: 10.3390/s18082446

Recent Progress in Protecting Lithium Anodes for Li‐O 2 Batteries
journal, February 2019


First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li–O 2 batteries
journal, January 2018

  • Yang, Yingying; Wang, Yuelin; Yao, Man
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 48
  • DOI: 10.1039/c8cp06745g

Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium–oxygen cells
journal, January 2020

  • Cheng, Hao; Mao, Yangjun; Lu, Yunhao
  • Nanoscale, Vol. 12, Issue 5
  • DOI: 10.1039/c9nr09749j

Protecting the Lithium Metal Anode for a Safe Flexible Lithium-Air Battery in Ambient Air
journal, October 2019

  • Liu, Tong; Feng, Xi-lan; Jin, Xin
  • Angewandte Chemie International Edition, Vol. 58, Issue 50
  • DOI: 10.1002/anie.201911229

Electrolytes for Rechargeable Lithium–Air Batteries
journal, February 2020

  • Lai, Jingning; Xing, Yi; Chen, Nan
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201903459

A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries
journal, February 2019


Building Better Batteries in the Solid State: A Review
journal, November 2019

  • Mauger, Alain; Julien, Christian M.; Paolella, Andrea
  • Materials, Vol. 12, Issue 23, p. 3892
  • DOI: 10.3390/ma12233892

Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review
journal, July 2018

  • Prauzek, Michal; Konecny, Jaromir; Borova, Monika
  • Sensors, Vol. 18, Issue 8
  • DOI: 10.3390/s18082446