DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array

Abstract

We study the collective, superradiant behavior in the system of emitter-dressed Ag nanorods. Starting from the Drude model for the plasmon oscillations, we arrive at a semi-empirical Hamiltonian describing the coupling between quantized surface plasmon modes and the quantum emitters that can be controlled by manipulating their geometry, spacing, and orientation. Further, identifying the lowest polariton mode as SPstates dressed by excitons in the vicinity of k = 0, we examine conditions allowing for the polariton quantum phase transition. While the system is formally a 1D array, we show that the polariton states of interest can undergo a quantum phase transition to form a Bose condensate at finite temperatures for physically accessible parameter ranges.

Authors:
 [1];  [1];  [2]
  1. Univ. of Houston, TX (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1492584
Report Number(s):
LA-UR-15-22223
Journal ID: ISSN 1089-5639
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 120; Journal Issue: 19; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Quantum Plasmonics; Superradiance; Phase-transitions; excitons

Citation Formats

Zaster, Svitlana, Bittner, Eric R., and Piryatinski, Andrei. Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array. United States: N. p., 2016. Web. doi:10.1021/acs.jpca.5b10726.
Zaster, Svitlana, Bittner, Eric R., & Piryatinski, Andrei. Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array. United States. https://doi.org/10.1021/acs.jpca.5b10726
Zaster, Svitlana, Bittner, Eric R., and Piryatinski, Andrei. Tue . "Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array". United States. https://doi.org/10.1021/acs.jpca.5b10726. https://www.osti.gov/servlets/purl/1492584.
@article{osti_1492584,
title = {Quantum Symmetry Breaking of Exciton/Polaritons in a Metal-Nanorod Plasmonic Array},
author = {Zaster, Svitlana and Bittner, Eric R. and Piryatinski, Andrei},
abstractNote = {We study the collective, superradiant behavior in the system of emitter-dressed Ag nanorods. Starting from the Drude model for the plasmon oscillations, we arrive at a semi-empirical Hamiltonian describing the coupling between quantized surface plasmon modes and the quantum emitters that can be controlled by manipulating their geometry, spacing, and orientation. Further, identifying the lowest polariton mode as SPstates dressed by excitons in the vicinity of k = 0, we examine conditions allowing for the polariton quantum phase transition. While the system is formally a 1D array, we show that the polariton states of interest can undergo a quantum phase transition to form a Bose condensate at finite temperatures for physically accessible parameter ranges.},
doi = {10.1021/acs.jpca.5b10726},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 19,
volume = 120,
place = {United States},
year = {Tue Feb 23 00:00:00 EST 2016},
month = {Tue Feb 23 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Repeated unit of a one-dimensional periodic structure of metal nanorods (blue spheroieds) lying in the xz plane with period a along x-axis. Angle θ between spheroid’s major axis and x-axis defines orientation of the SP-mode dipoles psp. Each nanorod is dressed by a quantum emitter (red disk) locatedmore » a distance d above the nanorod and characterized by a transition dipole moment µqe held parallel to psp. The wavy curve represents a collective plasmon mode $\hat{ψ}$k due to near-field coupling between the nanorods, Jsp (Eq. 23). The emitters are coupled to the collective SP mode via λnk (Eq. 26).« less

Save / Share:

Works referenced in this record:

Coherence in Spontaneous Radiation Processes
journal, January 1954


Collective Dynamics of Bose-Einstein Condensates in Optical Cavities
journal, July 2010


Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity
journal, April 2010


Bose–Einstein condensation of exciton polaritons
journal, September 2006

  • Kasprzak, J.; Richard, M.; Kundermann, S.
  • Nature, Vol. 443, Issue 7110
  • DOI: 10.1038/nature05131

Nonequilibrium Quantum Condensation in an Incoherently Pumped Dissipative System
journal, June 2006


The trilinear Hamiltonian: a zero-dimensional model of Hawking radiation from a quantized source
journal, September 2010


Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system
journal, January 2007


Superradiance of polaritons: Crossover from two-dimensional to three-dimensional crystals
journal, March 1997

  • Agranovich, V. M.; Basko, D. M.; Dubovsky, O. A.
  • The Journal of Chemical Physics, Vol. 106, Issue 10
  • DOI: 10.1063/1.473104

Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface
journal, August 2010


BCS Wave-Function Approach to the BEC-BCS Crossover of Exciton-Polariton Condensates
journal, October 2010


Collective coherence in planar semiconductor microcavities
journal, April 2007

  • Keeling, J.; Marchetti, F. M.; Szymańska, M. H.
  • Semiconductor Science and Technology, Vol. 22, Issue 5
  • DOI: 10.1088/0268-1242/22/5/R01

Collective fluid dynamics of a polariton condensate in a semiconductor microcavity
journal, January 2009


Estimating the conditions for polariton condensation in organic thin-film microcavities
journal, January 2012

  • Bittner, Eric R.; Silva, Carlos
  • The Journal of Chemical Physics, Vol. 136, Issue 3
  • DOI: 10.1063/1.3678015

Formation of an Exciton Polariton Condensate: Thermodynamic versus Kinetic Regimes
journal, October 2008


Frenkel-exciton-polaritons in organic microcavities
journal, January 2006


From polariton condensates to highly photonic quantum degenerate states of bosonic matter
journal, January 2011

  • Aßmann, Marc; Tempel, Jean-Sebastian; Veit, Franziska
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 5
  • DOI: 10.1073/pnas.1009847108

Simulation of J-aggregate microcavity photoluminescence
journal, May 2008


Spontaneous Bose Coherence of Excitons and Polaritons
journal, November 2002


Spontaneous Coherent Phase Transition of Polaritons in CdTe Microcavities
journal, May 2005


Spontaneous formation and optical manipulation of extended polariton condensates
journal, August 2010

  • Wertz, E.; Ferrier, L.; Solnyshkov, D. D.
  • Nature Physics, Vol. 6, Issue 11
  • DOI: 10.1038/nphys1750

Spontaneous formation of a polariton condensate in a planar GaAs microcavity
journal, August 2009

  • Wertz, Esther; Ferrier, Lydie; Solnyshkov, Dmitry D.
  • Applied Physics Letters, Vol. 95, Issue 5
  • DOI: 10.1063/1.3192408

Spontaneous microcavity-polariton coherence across the parametric threshold: Quantum Monte Carlo studies
journal, September 2005


Spontaneous nonground state polariton condensation in pillar microcavities
journal, February 2010


Strong exciton–photon coupling in an organic semiconductor microcavity
journal, September 1998

  • Lidzey, D. G.; Bradley, D. D. C.; Skolnick, M. S.
  • Nature, Vol. 395, Issue 6697
  • DOI: 10.1038/25692

Quantum plasmonics
journal, June 2013

  • Tame, M. S.; McEnery, K. R.; Özdemir, Ş. K.
  • Nature Physics, Vol. 9, Issue 6
  • DOI: 10.1038/nphys2615

Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect
journal, February 2009


Plasmon-mediated superradiance near metal nanostructures
journal, August 2010


Phase Transitions, Two-Level Atoms, and the A 2 Term
journal, August 1975


Rabi Oscillations of Excitons in Single Quantum Dots
journal, September 2001


Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter
journal, October 2010


Strong exciton-plasmon coupling in semiconducting carbon nanotubes
journal, August 2009


Multiple Plasmon Effects in the Energy-Loss Spectra of Electrons in Thin Films
journal, February 1971


Physical adsorption and surface plasmons
journal, January 1983


Optical Constants of the Noble Metals
journal, December 1972


Surface enhanced spectroscopy
journal, January 1984


Searching for better plasmonic materials
journal, March 2010


When excitons and plasmons meet: Emerging function through synthesis and assembly
journal, September 2015

  • Hollingsworth, Jennifer A.; Htoon, Han; Piryatinski, Andrei
  • MRS Bulletin, Vol. 40, Issue 9
  • DOI: 10.1557/mrs.2015.200

Works referencing / citing this record:

Revisiting Metal Electrodeposition in Porous Anodic Alumina: Toward Tailored Preparation of Metal Nanotube Arrays
journal, January 2018

  • Zhang, Aiqin; Zhou, Jiajing; Das, Paramita
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0651803jes

Probing dynamical symmetry breaking using quantum-entangled photons
journal, November 2017

  • Li, Hao; Piryatinski, Andrei; Jerke, Jonathan
  • Quantum Science and Technology, Vol. 3, Issue 1
  • DOI: 10.1088/2058-9565/aa93b6

Probing dynamical symmetry breaking using quantum-entangled photons
text, January 2017


Molecular emission near metal interfaces: the polaritonic regime
preprint, January 2017


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.