DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)

Abstract

The diffusion of gases confined in nanoporous materials underpins membrane and adsorption-based gas separations, yet relatively few measurements of diffusion coefficients in the promising class of materials, metal–organic frameworks (MOFs), have been reported to date. Recently we reported self-diffusion coefficients for 13CO2 in the MOF Zn2(dobpdc) (dobpdc4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) which has one-dimensional channels with a diameter of approximately 2 nm [Forse, A. C.; J. Am. Chem. Soc. 2018, 140, 1663-1673]. By analyzing the evolution of the residual 13C chemical shift anisotropy line shape at different gradient strengths, we obtained self-diffusion coefficients both along (D) and between (D) the one-dimensional MOF channels. The observation of nonzero D was unexpected based on the single crystal X-ray diffraction structure and flexible lattice molecular dynamics simulations, and we proposed that structural defects may be responsible for self-diffusion between the MOF channels. In this paper we revisit this analysis and show that homogeneous line broadening must be taken into account to obtain accurate values for D. In the presence of homogeneous line broadening, intensity at a particular NMR frequency represents signal from crystals with a range of orientations relative to the applied magnetic field and magnetic gradient field. To quantify these effects, we perform spectralmore » simulations that take into account homogeneous broadening and allow improved D values to be obtained. Finally, our new analysis best supports nonzero D at all studied dosing pressures and shows that our previous analysis overestimated D.« less

Authors:
ORCiD logo [1];  [2];  [3];  [2]; ORCiD logo [4]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry. Dept. of Chemical and Biomolecular Engineering. Berkeley Energy and Climate Inst.
  2. ABQMR, Inc., Albuquerque, NM (United States)
  3. RWTH Aachen Univ. (Germany). Inst. of Technical and Macromolecular Chemistry (ITMC)
  4. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1464169
Grant/Contract Number:  
AC02-05CH11231; SC0001015
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 27; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Forse, Alexander C., Altobelli, Stephen A., Benders, Stefan, Conradi, Mark S., and Reimer, Jeffrey A. Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc). United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b02843.
Forse, Alexander C., Altobelli, Stephen A., Benders, Stefan, Conradi, Mark S., & Reimer, Jeffrey A. Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc). United States. https://doi.org/10.1021/acs.jpcc.8b02843
Forse, Alexander C., Altobelli, Stephen A., Benders, Stefan, Conradi, Mark S., and Reimer, Jeffrey A. Mon . "Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)". United States. https://doi.org/10.1021/acs.jpcc.8b02843. https://www.osti.gov/servlets/purl/1464169.
@article{osti_1464169,
title = {Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc)},
author = {Forse, Alexander C. and Altobelli, Stephen A. and Benders, Stefan and Conradi, Mark S. and Reimer, Jeffrey A.},
abstractNote = {The diffusion of gases confined in nanoporous materials underpins membrane and adsorption-based gas separations, yet relatively few measurements of diffusion coefficients in the promising class of materials, metal–organic frameworks (MOFs), have been reported to date. Recently we reported self-diffusion coefficients for 13CO2 in the MOF Zn2(dobpdc) (dobpdc4– = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) which has one-dimensional channels with a diameter of approximately 2 nm [Forse, A. C.; J. Am. Chem. Soc. 2018, 140, 1663-1673]. By analyzing the evolution of the residual 13C chemical shift anisotropy line shape at different gradient strengths, we obtained self-diffusion coefficients both along (D∥) and between (D⊥) the one-dimensional MOF channels. The observation of nonzero D⊥ was unexpected based on the single crystal X-ray diffraction structure and flexible lattice molecular dynamics simulations, and we proposed that structural defects may be responsible for self-diffusion between the MOF channels. In this paper we revisit this analysis and show that homogeneous line broadening must be taken into account to obtain accurate values for D⊥. In the presence of homogeneous line broadening, intensity at a particular NMR frequency represents signal from crystals with a range of orientations relative to the applied magnetic field and magnetic gradient field. To quantify these effects, we perform spectral simulations that take into account homogeneous broadening and allow improved D⊥ values to be obtained. Finally, our new analysis best supports nonzero D⊥ at all studied dosing pressures and shows that our previous analysis overestimated D⊥.},
doi = {10.1021/acs.jpcc.8b02843},
journal = {Journal of Physical Chemistry. C},
number = 27,
volume = 122,
place = {United States},
year = {Mon Jun 11 00:00:00 EDT 2018},
month = {Mon Jun 11 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Diffusion in Nanoporous Materials
book, April 2012


Cooperative insertion of CO2 in diamine-appended metal-organic frameworks
journal, March 2015

  • McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian
  • Nature, Vol. 519, Issue 7543
  • DOI: 10.1038/nature14327

A spin transition mechanism for cooperative adsorption in metal–organic frameworks
journal, September 2017

  • Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia
  • Nature, Vol. 550, Issue 7674
  • DOI: 10.1038/nature23674

Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites
journal, December 2016

  • Yoon, Ji Woong; Chang, Hyunju; Lee, Seung-Joon
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4825

Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels
journal, May 2013


Large-Pore Apertures in a Series of Metal-Organic Frameworks
journal, May 2012


Maximizing the right stuff: The trade-off between membrane permeability and selectivity
journal, June 2017


Diffusion of Small Molecules in Metal Organic Framework Materials
journal, January 2013


Role of Hydrogen Bonding on Transport of Coadsorbed Gases in Metal–Organic Frameworks Materials
journal, January 2018

  • Tan, Kui; Jensen, Stephanie; Zuluaga, Sebastian
  • Journal of the American Chemical Society, Vol. 140, Issue 3
  • DOI: 10.1021/jacs.7b09943

Diffusion of CO 2 in Large Crystals of Cu-BTC MOF
journal, September 2016

  • Tovar, Trenton M.; Zhao, Junjie; Nunn, William T.
  • Journal of the American Chemical Society, Vol. 138, Issue 36
  • DOI: 10.1021/jacs.6b05930

Experimental Evidence Supported by Simulations of a Very High H 2 Diffusion in Metal Organic Framework Materials
journal, June 2008


Observation of single-file diffusion in a MOF
journal, January 2016

  • Jobic, H.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 26
  • DOI: 10.1039/C6CP00410E

Intracrystalline Diffusivities and Surface Permeabilities Deduced from Transient Concentration Profiles:  Methanol in MOF Manganese Formate
journal, June 2007

  • Kortunov, Pavel V.; Heinke, Lars; Arnold, Mirko
  • Journal of the American Chemical Society, Vol. 129, Issue 25
  • DOI: 10.1021/ja071265h

Quantitative Predictions of Molecular Diffusion in Binary Mixed-Linker Zeolitic Imidazolate Frameworks Using Molecular Simulations
journal, February 2018

  • Verploegh, Ross J.; Wu, Ying; Boulfelfel, Salah Eddine
  • The Journal of Physical Chemistry C, Vol. 122, Issue 10
  • DOI: 10.1021/acs.jpcc.8b00781

The predictive power of classical transition state theory revealed in diffusion studies with MOF ZIF-8
journal, May 2016


NMR Studies on the Diffusion of Hydrocarbons on the Metal-Organic Framework Material MOF-5
journal, March 2006

  • Stallmach, Frank; Gröger, Stefan; Künzel, Volker
  • Angewandte Chemie International Edition, Vol. 45, Issue 13, p. 2123-2126
  • DOI: 10.1002/anie.200502553

13C NMR study of diffusion anisotropy of carbon dioxide adsorbed in nanoporous DMOF-1
journal, March 2015


Microscopic diffusion of pure and mixed methane and carbon dioxide in ZIF-11 by high field diffusion NMR
journal, August 2017


Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn 2 (dobpdc)
journal, January 2018

  • Forse, Alexander C.; Gonzalez, Miguel I.; Siegelman, Rebecca L.
  • Journal of the American Chemical Society, Vol. 140, Issue 5
  • DOI: 10.1021/jacs.7b09453

NMR studies of carbon dioxide and methane self-diffusion in ZIF-8 at elevated gas pressures
journal, September 2012


Self-Diffusion Studies in CuBTC by PFG NMR and MD Simulations
journal, May 2010

  • Wehring, M.; Gascon, J.; Dubbeldam, D.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 23
  • DOI: 10.1021/jp102212w

Molecular Dynamics Phenomena of Water in the Metalorganic Framework MIL-100(Al), as Revealed by Pulsed Field Gradient NMR and Atomistic Simulation
journal, August 2017

  • Splith, Tobias; Pantatosaki, Evangelia; Kolokathis, Panagiotis D.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 33
  • DOI: 10.1021/acs.jpcc.7b06240

NMR methods applied to anisotropic diffusion: NMR methods applied to anisotropic diffusion
journal, November 2002

  • Furó, István; Dvinskikh, Sergey V.
  • Magnetic Resonance in Chemistry, Vol. 40, Issue 13
  • DOI: 10.1002/mrc.1123

Li 7 diffusion constant in the superionic conductor Li 3 N measured by NMR
journal, September 1984


Diffusion processes in the superionic conductor Li 3 N: An NMR study
journal, November 1982


PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites
journal, November 1991


Evidence of Anisotropic Self-Diffusion of Guest Molecules in Nanoporous Materials of MCM-41 Type
journal, September 2000

  • Stallmach, Frank; Kärger, Jörg; Krause, Cordula
  • Journal of the American Chemical Society, Vol. 122, Issue 38
  • DOI: 10.1021/ja001106x

PFG NMR diffusion measurements of CH4 and CO2 through large ZSM-58-crystals
journal, December 2013


Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI
journal, February 2002

  • Yablonskiy, D. A.; Sukstanskii, A. L.; Leawoods, J. C.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 5
  • DOI: 10.1073/pnas.052594699

The measurement of diffusion using deuterium pulsed field gradient nuclear magnetic resonance
journal, December 1983

  • Callaghan, P. T.; Le Gros, M. A.; Pinder, D. N.
  • The Journal of Chemical Physics, Vol. 79, Issue 12
  • DOI: 10.1063/1.445745

Molecular Mechanism of Lateral Diffusion of Fluorosurfactants. A 19 F NMR Study
journal, June 2002

  • Kadi, M.; Dvinskikh, S. V.; Furó, I.
  • Langmuir, Vol. 18, Issue 12
  • DOI: 10.1021/la0116544

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
journal, April 2012

  • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
  • DOI: 10.1021/ja300034j

Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO 2 , N 2 , and H 2 O
journal, April 2015

  • Mason, Jarad A.; McDonald, Thomas M.; Bae, Tae-Hyun
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/jacs.5b00838

Controlling Cooperative CO 2 Adsorption in Diamine-Appended Mg 2 (dobpdc) Metal–Organic Frameworks
journal, July 2017

  • Siegelman, Rebecca L.; McDonald, Thomas M.; Gonzalez, Miguel I.
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b05858

A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO 2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism
journal, September 2017

  • Milner, Phillip J.; Siegelman, Rebecca L.; Forse, Alexander C.
  • Journal of the American Chemical Society, Vol. 139, Issue 38
  • DOI: 10.1021/jacs.7b07612

CO 2 induced phase transitions in diamine-appended metal–organic frameworks
journal, January 2015

  • Vlaisavljevich, Bess; Odoh, Samuel O.; Schnell, Sondre K.
  • Chemical Science, Vol. 6, Issue 9
  • DOI: 10.1039/C5SC01828E

Enantioselective Recognition of Ammonium Carbamates in a Chiral Metal–Organic Framework
journal, October 2017

  • Martell, Jeffrey D.; Porter-Zasada, Leo B.; Forse, Alexander C.
  • Journal of the American Chemical Society, Vol. 139, Issue 44
  • DOI: 10.1021/jacs.7b09983

CO 2 Dynamics in Pure and Mixed-Metal MOFs with Open Metal Sites
journal, October 2017

  • Marti, Robert M.; Howe, Joshua D.; Morelock, Cody R.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 46
  • DOI: 10.1021/acs.jpcc.7b07179

CO 2 Dynamics in a Metal–Organic Framework with Open Metal Sites
journal, August 2012

  • Kong, Xueqian; Scott, Eric; Ding, Wen
  • Journal of the American Chemical Society, Vol. 134, Issue 35
  • DOI: 10.1021/ja306822p

Understanding CO 2 Dynamics in Metal-Organic Frameworks with Open Metal Sites
journal, March 2013

  • Lin, Li-Chiang; Kim, Jihan; Kong, Xueqian
  • Angewandte Chemie International Edition, Vol. 52, Issue 16
  • DOI: 10.1002/anie.201300446

Rotational and translational dynamics of CO2 adsorbed in MOF Zn2(bdc)2(dabco)
journal, November 2015


Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)
journal, November 2012

  • Hoffmann, Herbert; Debowski, Marta; Müller, Philipp
  • Materials, Vol. 5, Issue 12
  • DOI: 10.3390/ma5122537

Understanding The Fascinating Origins of CO 2 Adsorption and Dynamics in MOFs
journal, August 2016


Deducing CO 2 motion, adsorption locations and binding strengths in a flexible metal–organic framework without open metal sites
journal, January 2016

  • Zhang, Yue; Lucier, Bryan E. G.; Huang, Yining
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 12
  • DOI: 10.1039/C5CP04984A

Sizable dynamics in small pores: CO 2 location and motion in the α-Mg formate metal–organic framework
journal, January 2017

  • Lu, Yuanjun; Lucier, Bryan E. G.; Zhang, Yue
  • Phys. Chem. Chem. Phys., Vol. 19, Issue 8
  • DOI: 10.1039/C7CP00199A

SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy
journal, December 2000

  • Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr
  • Journal of Magnetic Resonance, Vol. 147, Issue 2
  • DOI: 10.1006/jmre.2000.2179

Pulsed field gradient stimulated echo methods for improved NMR diffusion measurements in heterogeneous systems
journal, June 1989


Works referencing / citing this record:

In Operando Analysis of Diffusion in Porous Metal‐Organic Framework Catalysts
journal, December 2018

  • Gao, Wen‐Yang; Cardenal, Ashley D.; Wang, Chen‐Hao
  • Chemistry – A European Journal, Vol. 25, Issue 14
  • DOI: 10.1002/chem.201804490