DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene

Abstract

We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm-1K-1 which is much smaller than that of α-phase tungsten (174 Wm-1K-1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and compared using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m-2K-1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m-2K-1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [1]; ORCiD logo [2]
  1. Iowa State Univ., Ames, IA (United States)
  2. Wuhan Univ. (China)
Publication Date:
Research Org.:
Iowa State Univ., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1425961
Grant/Contract Number:  
EE0007686; NE0000671
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Han, Meng, Yuan, Pengyu, Liu, Jing, Si, Shuyao, Zhao, Xiaolong, Yue, Yanan, Wang, Xinwei, and Xiao, Xiangheng. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene. United States: N. p., 2017. Web. doi:10.1038/s41598-017-12389-1.
Han, Meng, Yuan, Pengyu, Liu, Jing, Si, Shuyao, Zhao, Xiaolong, Yue, Yanan, Wang, Xinwei, & Xiao, Xiangheng. Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene. United States. https://doi.org/10.1038/s41598-017-12389-1
Han, Meng, Yuan, Pengyu, Liu, Jing, Si, Shuyao, Zhao, Xiaolong, Yue, Yanan, Wang, Xinwei, and Xiao, Xiangheng. Fri . "Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene". United States. https://doi.org/10.1038/s41598-017-12389-1. https://www.osti.gov/servlets/purl/1425961.
@article{osti_1425961,
title = {Interface Energy Coupling between β-tungsten Nanofilm and Few-layered Graphene},
author = {Han, Meng and Yuan, Pengyu and Liu, Jing and Si, Shuyao and Zhao, Xiaolong and Yue, Yanan and Wang, Xinwei and Xiao, Xiangheng},
abstractNote = {We report the thermal conductance induced by few-layered graphene (G) sandwiched between β-phase tungsten (β-W) films of 15, 30 and 40 nm thickness. Our differential characterization is able to distinguish the thermal conductance of β-W film and β-W/G interface. The cross-plane thermal conductivity (k) of β-W films is determined at 1.69~2.41 Wm-1K-1 which is much smaller than that of α-phase tungsten (174 Wm-1K-1). This small value is consistent with the large electrical resistivity reported for β-W in literatures and in this work. The β-W/β-W and β-W/G interface thermal conductance (GW/W and GW/G) are characterized and compared using multilayered β-W films with and without sandwiched graphene layers. The average GW/W is found to be at 280 MW m-2K-1. GW/G features strong variation from sample to sample, and has a lower-limit of 84 MW m-2K-1, taking into consideration of the uncertainties. This is attributed to possible graphene structure damage and variation during graphene transfer and W sputtering. The difference between G2W/G and GW/W uncovers the finite thermal resistance induced by the graphene layer. Compared with up-to-date reported graphene interface thermal conductance, the β-W/G interface is at the high end in terms of local energy coupling.},
doi = {10.1038/s41598-017-12389-1},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {Fri Sep 22 00:00:00 EDT 2017},
month = {Fri Sep 22 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Manipulating Thermal Conductance at Metal–Graphene Contacts via Chemical Functionalization
journal, January 2012

  • Hopkins, Patrick E.; Baraket, Mira; Barnat, Edward V.
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203060j

Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods
journal, September 2005


Electrical Resistivity Model for Polycrystalline Films: the case of Specular Reflection at External Surfaces
journal, June 1969

  • Mayadas, A. F.; Shatzkes, M.; Janak, J. F.
  • Applied Physics Letters, Vol. 14, Issue 11
  • DOI: 10.1063/1.1652680

Radiation Resistant Vanadium-Graphene Nanolayered Composite
journal, April 2016

  • Kim, Youbin; Baek, Jinwook; Kim, Sunghwan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24785

Inhomogeneous strain states in sputter deposited tungsten thin films
journal, November 1997

  • Noyan, I. C.; Shaw, T. M.; Goldsmith, C. C.
  • Journal of Applied Physics, Vol. 82, Issue 9
  • DOI: 10.1063/1.366237

Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods
journal, September 2005


Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces
journal, February 1970


Energy dissipation in graphene field-effect transistors
text, January 2009


Electrical and thermal transport in single nickel nanowire
journal, February 2008

  • Ou, M. N.; Yang, T. J.; Harutyunyan, S. R.
  • Applied Physics Letters, Vol. 92, Issue 6
  • DOI: 10.1063/1.2839572

XRD line profile analysis of tungsten thin films
journal, October 2005


Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms
journal, July 2011


Phase transformation of sputter deposited tungsten thin films with A‐15 structure
journal, June 1996

  • O’Keefe, M. J.; Grant, J. T.
  • Journal of Applied Physics, Vol. 79, Issue 12
  • DOI: 10.1063/1.362584

Energy Dissipation in Graphene Field-Effect Transistors
journal, May 2009

  • Freitag, Marcus; Steiner, Mathias; Martin, Yves
  • Nano Letters, Vol. 9, Issue 5, p. 1883-1888
  • DOI: 10.1021/nl803883h

Plasma‐enhanced chemical vapor deposition of β‐tungsten, a metastable phase
journal, September 1984

  • Tang, C. C.; Hess, D. W.
  • Applied Physics Letters, Vol. 45, Issue 6
  • DOI: 10.1063/1.95337

Elektrolysen in Phosphatschmelzen. I. Die elektrolytische Gewinnung von ?- und ?-Wolfram
journal, May 1931

  • Hartmann, Hellmuth; Ebert, Fritz; Bretschneider, Otto
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 198, Issue 1
  • DOI: 10.1002/zaac.19311980111

Inhomogeneous strain states in sputter deposited tungsten thin films
journal, November 1997

  • Noyan, I. C.; Shaw, T. M.; Goldsmith, C. C.
  • Journal of Applied Physics, Vol. 82, Issue 9
  • DOI: 10.1063/1.366237

Electrical Resistivity Model for Polycrystalline Films: the case of Specular Reflection at External Surfaces
journal, June 1969

  • Mayadas, A. F.; Shatzkes, M.; Janak, J. F.
  • Applied Physics Letters, Vol. 14, Issue 11
  • DOI: 10.1063/1.1652680

Superconductivity in Evaporated Tungsten Films
journal, April 1968

  • Basavaiah, S.; Pollack, S. R.
  • Applied Physics Letters, Vol. 12, Issue 8
  • DOI: 10.1063/1.1651982

Pure Tungsten Direct from Ore
journal, January 1943

  • Fink, Colin G.; Ma, Chuk Ching
  • Transactions of The Electrochemical Society, Vol. 84, Issue 1
  • DOI: 10.1149/1.3071553

Negligible Electronic Contribution to Heat Transfer across Intrinsic Metal/Graphene Interfaces
journal, August 2017


Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering
journal, June 1973

  • Petroff, P.; Sheng, T. T.; Sinha, A. K.
  • Journal of Applied Physics, Vol. 44, Issue 6
  • DOI: 10.1063/1.1662611

Impermeable Atomic Membranes from Graphene Sheets
text, January 2008


Superconductivity in Films of β Tungsten and Other Transition Metals
journal, August 1965


Graphene electrostatic microphone and ultrasonic radio
journal, July 2015

  • Zhou, Qin; Zheng, Jinglin; Onishi, Seita
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 29
  • DOI: 10.1073/pnas.1505800112

Thermal and Electrical Conduction in Ultrathin Metallic Films: 7 nm down to Sub-Nanometer Thickness
journal, February 2013


Sputter-deposited amorphous-like tungsten
journal, March 2004


Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering
journal, June 1973

  • Petroff, P.; Sheng, T. T.; Sinha, A. K.
  • Journal of Applied Physics, Vol. 44, Issue 6
  • DOI: 10.1063/1.1662611

Growth and characterization of α and β -phase tungsten films on various substrates
journal, March 2016

  • Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 34, Issue 2
  • DOI: 10.1116/1.4936261

Graphene Nano-Ribbon Electronics
text, January 2007


Thermophysical properties of hydrogenated vanadium-doped magnesium porous nanostructures
journal, December 2009


Plasma‐enhanced chemical vapor deposition of β‐tungsten, a metastable phase
journal, September 1984

  • Tang, C. C.; Hess, D. W.
  • Applied Physics Letters, Vol. 45, Issue 6
  • DOI: 10.1063/1.95337

Heat Conduction across Monolayer and Few-Layer Graphenes
journal, November 2010

  • Koh, Yee Kan; Bae, Myung-Ho; Cahill, David G.
  • Nano Letters, Vol. 10, Issue 11, p. 4363-4368
  • DOI: 10.1021/nl101790k

Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys
journal, April 2016


Phase transformation of thin sputter-deposited tungsten films at room temperature
journal, January 2002

  • Rossnagel, S. M.; Noyan, I. C.; Cabral, C.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 20, Issue 5
  • DOI: 10.1116/1.1506905

Pure Tungsten Direct from Ore
journal, January 1943

  • Fink, Colin G.; Ma, Chuk Ching
  • Transactions of The Electrochemical Society, Vol. 84, Issue 1
  • DOI: 10.1149/1.3071553

Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect
journal, May 2015

  • Hao, Qiang; Chen, Wenzhe; Xiao, Gang
  • Applied Physics Letters, Vol. 106, Issue 18
  • DOI: 10.1063/1.4919867

Phase transformation of sputter deposited tungsten thin films with A‐15 structure
journal, June 1996

  • O’Keefe, M. J.; Grant, J. T.
  • Journal of Applied Physics, Vol. 79, Issue 12
  • DOI: 10.1063/1.362584

Thermal Conductivity of the Elements
journal, April 1972

  • Ho, C. Y.; Powell, R. W.; Liley, P. E.
  • Journal of Physical and Chemical Reference Data, Vol. 1, Issue 2
  • DOI: 10.1063/1.3253100

Impermeable Atomic Membranes from Graphene Sheets
journal, August 2008

  • Bunch, J. Scott; Verbridge, Scott S.; Alden, Jonathan S.
  • Nano Letters, Vol. 8, Issue 8
  • DOI: 10.1021/nl801457b

Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films
journal, September 2011

  • Choi, Dooho; Wang, Bincheng; Chung, Suk
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 29, Issue 5
  • DOI: 10.1116/1.3622619

Effect of zirconium(IV) propoxide concentration on the thermophysical properties of hybrid organic-inorganic films
journal, July 2008

  • Wang, Tao; Wang, Xinwei; Zhang, Yanwu
  • Journal of Applied Physics, Vol. 104, Issue 1
  • DOI: 10.1063/1.2951961

Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene
text, January 2006


Energy Band Gap Engineering of Graphene Nanoribbons
text, January 2007


Residual stress, microstructure, and structure of tungsten thin films deposited by magnetron sputtering
journal, January 2000

  • Shen, Y. G.; Mai, Y. W.; Zhang, Q. C.
  • Journal of Applied Physics, Vol. 87, Issue 1
  • DOI: 10.1063/1.371841

Highly thermally conductive and mechanically strong graphene fibers
journal, September 2015


Superconductivity of Tungsten
journal, June 1964


Controlled nanostructuration of polycrystalline tungsten thin films
journal, May 2013

  • Girault, B.; Eyidi, D.; Goudeau, P.
  • Journal of Applied Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.4803699

Measurement of the thermal conductance of the graphene/SiO2 interface
journal, November 2010

  • Mak, Kin Fai; Lui, Chun Hung; Heinz, Tony F.
  • Applied Physics Letters, Vol. 97, Issue 22
  • DOI: 10.1063/1.3511537

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure
journal, September 2014

  • Jagannadham, K.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 5
  • DOI: 10.1116/1.4890576

The conductivity of thin metallic films according to the electron theory of metals
journal, January 1938


Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys
journal, April 2016


Oxidation of tungsten and tungsten carbide in dry and humid atmospheres
journal, January 1996

  • Warren, Anna; Nylund, Anders; Olefjord, Ingemar
  • International Journal of Refractory Metals and Hard Materials, Vol. 14, Issue 5-6
  • DOI: 10.1016/s0263-4368(96)00027-3

Highly thermally conductive and mechanically strong graphene fibers
journal, September 2015


Thermal Conductivity of the Elements
journal, April 1972

  • Ho, C. Y.; Powell, R. W.; Liley, P. E.
  • Journal of Physical and Chemical Reference Data, Vol. 1, Issue 2
  • DOI: 10.1063/1.3253100

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
journal, September 2012

  • Pai, Chi-Feng; Liu, Luqiao; Li, Y.
  • Applied Physics Letters, Vol. 101, Issue 12
  • DOI: 10.1063/1.4753947

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Graphene electrostatic microphone and ultrasonic radio
journal, July 2015

  • Zhou, Qin; Zheng, Jinglin; Onishi, Seita
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 29
  • DOI: 10.1073/pnas.1505800112

Low energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments
journal, March 2016


Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene
journal, February 2007

  • Graf, D.; Molitor, F.; Ensslin, K.
  • Nano Letters, Vol. 7, Issue 2, p. 238-242
  • DOI: 10.1021/nl061702a

Sputter-deposited amorphous-like tungsten
journal, March 2004


Noncontact thermal characterization of multiwall carbon nanotubes
journal, March 2005

  • Wang, Xinwei; Zhong, Zhanrong; Xu, Jun
  • Journal of Applied Physics, Vol. 97, Issue 6
  • DOI: 10.1063/1.1854725

Low energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments
journal, March 2016


Graphene nano-ribbon electronics
journal, December 2007

  • Chen, Zhihong; Lin, Yu-Ming; Rooks, Michael J.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, Issue 2, p. 228-232
  • DOI: 10.1016/j.physe.2007.06.020

Radiation tolerance of Cu/W multilayered nanocomposites
journal, June 2011


Thermal contact resistance between graphene and silicon dioxide
journal, October 2009

  • Chen, Z.; Jang, W.; Bao, W.
  • Applied Physics Letters, Vol. 95, Issue 16
  • DOI: 10.1063/1.3245315

Electrical and Thermal Conduction in Atomic Layer Deposition Nanobridges Down to 7 nm Thickness
journal, January 2012

  • Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203548w

Heat Conduction across Monolayer and Few-Layer Graphenes
text, January 2010


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Phase transformation of thin sputter-deposited tungsten films at room temperature
journal, January 2002

  • Rossnagel, S. M.; Noyan, I. C.; Cabral, C.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 20, Issue 5
  • DOI: 10.1116/1.1506905

Radiation tolerance of Cu/W multilayered nanocomposites
journal, June 2011


Controlled nanostructuration of polycrystalline tungsten thin films
journal, May 2013

  • Girault, B.; Eyidi, D.; Goudeau, P.
  • Journal of Applied Physics, Vol. 113, Issue 17
  • DOI: 10.1063/1.4803699

Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure
journal, September 2014

  • Jagannadham, K.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 5
  • DOI: 10.1116/1.4890576

Electric Field Effect in Atomically Thin Carbon Films
journal, October 2004


XRD line profile analysis of tungsten thin films
journal, October 2005


The mean free path of electrons in metals
journal, September 2001


Elektrolysen in Phosphatschmelzen. I. Die elektrolytische Gewinnung von ?- und ?-Wolfram
journal, May 1931

  • Hartmann, Hellmuth; Ebert, Fritz; Bretschneider, Otto
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 198, Issue 1
  • DOI: 10.1002/zaac.19311980111

Measurement of Sheet Resistivities with the Four-Point Probe
journal, May 1958


Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms
journal, July 2011


Energy Band-Gap Engineering of Graphene Nanoribbons
journal, May 2007


Thermal contact resistance between graphene and silicon dioxide
journal, October 2009

  • Chen, Z.; Jang, W.; Bao, W.
  • Applied Physics Letters, Vol. 95, Issue 16
  • DOI: 10.1063/1.3245315

Measurement of the thermal conductance of the graphene/SiO2 interface
journal, November 2010

  • Mak, Kin Fai; Lui, Chun Hung; Heinz, Tony F.
  • Applied Physics Letters, Vol. 97, Issue 22
  • DOI: 10.1063/1.3511537

Radiation Resistant Vanadium-Graphene Nanolayered Composite
journal, April 2016

  • Kim, Youbin; Baek, Jinwook; Kim, Sunghwan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24785

Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films
journal, September 2011

  • Choi, Dooho; Wang, Bincheng; Chung, Suk
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 29, Issue 5
  • DOI: 10.1116/1.3622619

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten
journal, September 2012

  • Pai, Chi-Feng; Liu, Luqiao; Li, Y.
  • Applied Physics Letters, Vol. 101, Issue 12
  • DOI: 10.1063/1.4753947

Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect
journal, May 2015

  • Hao, Qiang; Chen, Wenzhe; Xiao, Gang
  • Applied Physics Letters, Vol. 106, Issue 18
  • DOI: 10.1063/1.4919867

Noncontact thermal characterization of multiwall carbon nanotubes
journal, March 2005

  • Wang, Xinwei; Zhong, Zhanrong; Xu, Jun
  • Journal of Applied Physics, Vol. 97, Issue 6
  • DOI: 10.1063/1.1854725

Thermophysical properties of hydrogenated vanadium-doped magnesium porous nanostructures
journal, December 2009


Effect of zirconium(IV) propoxide concentration on the thermophysical properties of hybrid organic-inorganic films
journal, July 2008

  • Wang, Tao; Wang, Xinwei; Zhang, Yanwu
  • Journal of Applied Physics, Vol. 104, Issue 1
  • DOI: 10.1063/1.2951961

Growth and characterization of α and β -phase tungsten films on various substrates
journal, March 2016

  • Lee, Jeong-Seop; Cho, Jaehun; You, Chun-Yeol
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 34, Issue 2
  • DOI: 10.1116/1.4936261

Electrical and thermal transport in single nickel nanowire
journal, February 2008

  • Ou, M. N.; Yang, T. J.; Harutyunyan, S. R.
  • Applied Physics Letters, Vol. 92, Issue 6
  • DOI: 10.1063/1.2839572

Works referencing / citing this record: