DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation

Abstract

A family of Ru complexes based on the pentadentate ligand t5a3– ((2,5-bis(6-carboxylatopyridin-2-yl)pyrrol-1-ide) and pyridine (py) that includes {RuII(Ht5a-κ-N2O)(py)3} (1HII(κ-N2O)), {RuIII(t5a-κ-N3O1.5)(py)2} (2III(κ-N3O1.5)), and {RuIV(t5a-κ-N3O2)(py)2}+ ({2IV(κ-N3O2)}+) has been prepared and thoroughly characterized. Complexes 1HII(κ-N2O), 2III(κ-N3O1.5), and {2IV(κ-N3O2)}+ have been investigated in solution by spectroscopic methods (NMR, UV–vis) and in the solid state by single-crystal X-ray diffraction analysis and complemented by density functional theory (DFT) calculations. The redox properties of complex 2III(κ-N3O1.5) have been studied by electrochemical methods (CV and DPV), showing its easy access to high oxidation states, thanks to the trianionic nature of the t5a3– ligand. Under neutral to basic conditions complex {2IV(κ-N3O2)}+ undergoes aquation, generating {RuIV(OH)(t5a-κ-N2O)(py)2} (2IV(OH)(κ-N2O)). Further oxidation of the complex forms {RuV(O)(t5a-κ-N2O)(py)2} (2V(O)(κ-N2O)), which is a very efficient water oxidation catalyst, reaching a TOFMAX value of 9400 s–1 at pH 7.0, as measured via foot of the wave analysis. The key to fast kinetics for the catalytic oxidation of water to dioxygen by 2V(O)(κ-N2O) is due not only to the easy access to high oxidation states but also to the intramolecular hydrogen bonding provided by the noncoordinated dangling carboxylate at the transition state, as corroborated by DFT calculations.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [3];  [3];  [4];  [5];  [3]; ORCiD logo [6]
  1. The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain). Inst. of Chemical Research of Catalonia (ICIQ); Univ. Rovira i Virgli, Tarragona (Spain)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Univ. de Nantes (France)
  4. The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain). Inst. of Chemical Research of Catalonia (ICIQ)
  5. Univ. Autonoma de Barcelona (Spain)
  6. The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain). Inst. of Chemical Research of Catalonia (ICIQ); Univ. Autonoma de Barcelona (Spain)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1425070
Report Number(s):
BNL-203210-2018-JAAM
Journal ID: ISSN 2155-5435
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 3; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY

Citation Formats

Matheu, Roc, Ertem, Mehmed Z., Pipelier, Muriel, Lebreton, Jacques, Dubreuil, Didier, Benet-Buchholz, Jordi, Sala, Xavier, Tessier, Arnaud, and Llobet, Antoni. The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation. United States: N. p., 2018. Web. doi:10.1021/acscatal.7b03638.
Matheu, Roc, Ertem, Mehmed Z., Pipelier, Muriel, Lebreton, Jacques, Dubreuil, Didier, Benet-Buchholz, Jordi, Sala, Xavier, Tessier, Arnaud, & Llobet, Antoni. The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation. United States. https://doi.org/10.1021/acscatal.7b03638
Matheu, Roc, Ertem, Mehmed Z., Pipelier, Muriel, Lebreton, Jacques, Dubreuil, Didier, Benet-Buchholz, Jordi, Sala, Xavier, Tessier, Arnaud, and Llobet, Antoni. Fri . "The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation". United States. https://doi.org/10.1021/acscatal.7b03638. https://www.osti.gov/servlets/purl/1425070.
@article{osti_1425070,
title = {The Role of Seven-Coordination in Ru-Catalyzed Water Oxidation},
author = {Matheu, Roc and Ertem, Mehmed Z. and Pipelier, Muriel and Lebreton, Jacques and Dubreuil, Didier and Benet-Buchholz, Jordi and Sala, Xavier and Tessier, Arnaud and Llobet, Antoni},
abstractNote = {A family of Ru complexes based on the pentadentate ligand t5a3– ((2,5-bis(6-carboxylatopyridin-2-yl)pyrrol-1-ide) and pyridine (py) that includes {RuII(Ht5a-κ-N2O)(py)3} (1HII(κ-N2O)), {RuIII(t5a-κ-N3O1.5)(py)2} (2III(κ-N3O1.5)), and {RuIV(t5a-κ-N3O2)(py)2}+ ({2IV(κ-N3O2)}+) has been prepared and thoroughly characterized. Complexes 1HII(κ-N2O), 2III(κ-N3O1.5), and {2IV(κ-N3O2)}+ have been investigated in solution by spectroscopic methods (NMR, UV–vis) and in the solid state by single-crystal X-ray diffraction analysis and complemented by density functional theory (DFT) calculations. The redox properties of complex 2III(κ-N3O1.5) have been studied by electrochemical methods (CV and DPV), showing its easy access to high oxidation states, thanks to the trianionic nature of the t5a3– ligand. Under neutral to basic conditions complex {2IV(κ-N3O2)}+ undergoes aquation, generating {RuIV(OH)(t5a-κ-N2O)(py)2} (2IV(OH)(κ-N2O)). Further oxidation of the complex forms {RuV(O)(t5a-κ-N2O)(py)2} (2V(O)(κ-N2O)), which is a very efficient water oxidation catalyst, reaching a TOFMAX value of 9400 s–1 at pH 7.0, as measured via foot of the wave analysis. The key to fast kinetics for the catalytic oxidation of water to dioxygen by 2V(O)(κ-N2O) is due not only to the easy access to high oxidation states but also to the intramolecular hydrogen bonding provided by the noncoordinated dangling carboxylate at the transition state, as corroborated by DFT calculations.},
doi = {10.1021/acscatal.7b03638},
journal = {ACS Catalysis},
number = 3,
volume = 8,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2018},
month = {Fri Jan 19 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Research opportunities to advance solar energy utilization
journal, January 2016


Will Solar-Driven Water-Splitting Devices See the Light of Day?
journal, September 2013

  • McKone, James R.; Lewis, Nathan S.; Gray, Harry B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4021518

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


Catalytic conversion of nitrogen to ammonia by an iron model complex
journal, September 2013

  • Anderson, John S.; Rittle, Jonathan; Peters, Jonas C.
  • Nature, Vol. 501, Issue 7465
  • DOI: 10.1038/nature12435

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Molecular Catalysts for Water Oxidation
journal, July 2015


Water oxidation catalysts based on abundant 1st row transition metals
journal, September 2013


How to make an efficient and robust molecular catalyst for water oxidation
journal, January 2017

  • Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Matheu, Roc
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/C7CS00248C

Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
journal, February 2010

  • Concepcion, Javier J.; Tsai, Ming-Kang; Muckerman, James T.
  • Journal of the American Chemical Society, Vol. 132, Issue 5, p. 1545-1557
  • DOI: 10.1021/ja904906v

Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex
journal, August 2015

  • Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, Jordi
  • Journal of the American Chemical Society, Vol. 137, Issue 33
  • DOI: 10.1021/jacs.5b06541

A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II
journal, May 2016

  • Schulze, Marcus; Kunz, Valentin; Frischmann, Peter D.
  • Nature Chemistry, Vol. 8, Issue 6
  • DOI: 10.1038/nchem.2503

Catalytic oxidation of water by an oxo-bridged ruthenium dimer
journal, July 1982

  • Gersten, Susan W.; Samuels, George J.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 104, Issue 14
  • DOI: 10.1021/ja00378a053

Electronic Modification of the [Ru II (tpy)(bpy)(OH 2 )] 2+ Scaffold: Effects on Catalytic Water Oxidation
journal, November 2010

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Henderson, Matthew A.
  • Journal of the American Chemical Society, Vol. 132, Issue 45
  • DOI: 10.1021/ja106108y

Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates
journal, September 2011

  • Polyansky, Dmitry E.; Muckerman, James T.; Rochford, Jonathan
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja203249e

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Kinetic Analysis of an Efficient Molecular Light-Driven Water Oxidation System
journal, July 2017


Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH] Bridging Ligand as an Intermediate for Catalytic Water Oxidation
journal, August 2009

  • Duan, Lele; Fischer, Andreas; Xu, Yunhua
  • Journal of the American Chemical Society, Vol. 131, Issue 30
  • DOI: 10.1021/ja9034686

Supramolecular Water Oxidation with Ru-bda-Based Catalysts
journal, November 2014

  • Richmond, Craig J.; Matheu, Roc; Poater, Albert
  • Chemistry - A European Journal, Vol. 20, Issue 52
  • DOI: 10.1002/chem.201405144

Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses
journal, November 2014

  • Suga, Michihiro; Akita, Fusamichi; Hirata, Kunio
  • Nature, Vol. 517, Issue 7532
  • DOI: 10.1038/nature13991

Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands
journal, May 2016

  • Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna
  • Angewandte Chemie International Edition, Vol. 55, Issue 28
  • DOI: 10.1002/anie.201601943

Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts
journal, August 2017

  • Matheu, Roc; Ertem, Mehmed Z.; Gimbert-Suriñach, Carolina
  • ACS Catalysis, Vol. 7, Issue 10
  • DOI: 10.1021/acscatal.7b01860

A Ru(II) Bis-terpyridine-like Complex that Catalyzes Water Oxidation: The Influence of Steric Strain
journal, August 2013

  • Kaveevivitchai, Nattawut; Kohler, Lars; Zong, Ruifa
  • Inorganic Chemistry, Vol. 52, Issue 18
  • DOI: 10.1021/ic4016383

Tuning the Guest-Binding Ability of a Helically Folded Capsule by In Situ Modification of the Aromatic Oligoamide Backbone
journal, January 2014

  • Lautrette, Guillaume; Aube, Christophe; Ferrand, Yann
  • Chemistry - A European Journal, Vol. 20, Issue 6
  • DOI: 10.1002/chem.201303929

Catalyzed Addition of Aldehydes to Activated Double Bonds?A New Synthetic Approach
journal, November 1976

  • Stetter, Hermann
  • Angewandte Chemie International Edition in English, Vol. 15, Issue 11
  • DOI: 10.1002/anie.197606391

Complexes of 2,5-Bis(α-pyridyl)pyrrolate with Pd(II) and Pt(II): A Monoanionic Iso-π-Electron Ligand Analog of Terpyridine
journal, September 2012

  • Imler, Gregory H.; Lu, Zhi; Kistler, Kurt A.
  • Inorganic Chemistry, Vol. 51, Issue 19
  • DOI: 10.1021/ic300435t

Mechanistic insight into catalytic oxidations of organic compounds by ruthenium(iv)-oxo complexes with pyridylamine ligands
journal, January 2012

  • Ohzu, Shingo; Ishizuka, Tomoya; Hirai, Yuichirou
  • Chemical Science, Vol. 3, Issue 12
  • DOI: 10.1039/c2sc21195e

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

Density Functionals with Broad Applicability in Chemistry
journal, February 2008

  • Zhao, Yan; Truhlar, Donald G.
  • Accounts of Chemical Research, Vol. 41, Issue 2
  • DOI: 10.1021/ar700111a

An optically transparent thin-layer electrochemical cell for the study of vibrational circular dichroism of chiral redox-active molecules
journal, March 2013

  • Domingos, Sérgio R.; Luyten, Henk; van Anrooij, Fred
  • Review of Scientific Instruments, Vol. 84, Issue 3
  • DOI: 10.1063/1.4793722

Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis
journal, November 2016


Development of Bioinspired Mn 4 O 4 −Cubane Water Oxidation Catalysts: Lessons from Photosynthesis
journal, December 2009

  • Dismukes, G. Charles; Brimblecombe, Robin; Felton, Greg A. N.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900249x

The Artificial Leaf
journal, January 2012

  • Nocera, Daniel G.
  • Accounts of Chemical Research, Vol. 45, Issue 5
  • DOI: 10.1021/ar2003013

Single Site Isomeric Ru WOCs with an Electron-Withdrawing Group: Synthesis, Electrochemical Characterization, and Reactivity
journal, December 2015


Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation
journal, January 2014

  • Li, Fusheng; Li, Lin; Tong, Lianpeng
  • Chem. Commun., Vol. 50, Issue 90
  • DOI: 10.1039/C4CC06959E

Experimental and quantum chemical characterization of the water oxidation cycle catalysed by [RuII(damp)(bpy)(H2O)]2+
journal, January 2012

  • Vigara, Laura; Ertem, Mehmed Z.; Planas, Nora
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20399e

Mechanisms of Photoisomerization and Water-Oxidation Catalysis of Mononuclear Ruthenium(II) Monoaquo Complexes
journal, May 2013

  • Hirahara, Masanari; Ertem, Mehmed Z.; Komi, Manabu
  • Inorganic Chemistry, Vol. 52, Issue 11
  • DOI: 10.1021/ic400054k

Works referencing / citing this record:

Quantum Chemical Study of the Mechanism of Water Oxidation Catalyzed by a Heterotrinuclear Ru 2 Mn Complex
journal, February 2019

  • Li, Ying‐Ying; Gimbert, Carolina; Llobet, Antoni
  • ChemSusChem, Vol. 12, Issue 5
  • DOI: 10.1002/cssc.201802395

Low overpotential water oxidation at neutral pH catalyzed by a copper( ii ) porphyrin
journal, January 2019

  • Liu, Yanju; Han, Yongzhen; Zhang, Zongyao
  • Chemical Science, Vol. 10, Issue 9
  • DOI: 10.1039/c8sc04529a

Kinetics and mechanisms of catalytic water oxidation
journal, January 2019

  • Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo
  • Dalton Transactions, Vol. 48, Issue 3
  • DOI: 10.1039/c8dt04341h

Behavior of Ru-bda Water-Oxidation Catalysts in Low Oxidation States
journal, August 2018

  • Matheu, Roc; Ghaderian, Abolfazl; Francàs, Laia
  • Chemistry - A European Journal, Vol. 24, Issue 49
  • DOI: 10.1002/chem.201801236

The Art of Splitting Water: Storing Energy in a Readily Available and Convenient Form: The Art of Splitting Water: Storing Energy in a Readily Available and Convenient Form
journal, March 2019

  • Shatskiy, Andrey; Kärkäs, Markus D.; Åkermark, Björn
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 15
  • DOI: 10.1002/ejic.201801548

Reversible pyrrole-based proton storage/release in ruthenium( ii ) complexes
journal, January 2019

  • Zhang, Zheng-Hao; He, Piao; Kang, Shi-Rui
  • Chemical Communications, Vol. 55, Issue 97
  • DOI: 10.1039/c9cc08288c

Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
journal, January 2019

  • Praneeth, Vijayendran K. K.; Kondo, Mio; Okamura, Masaya
  • Chemical Science, Vol. 10, Issue 17
  • DOI: 10.1039/c9sc00678h