DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts

Abstract

In this paper, we describe the synthesis, structural characterization, and redox properties of two new Ru complexes containing the dianionic potentially pentadentate [2,2':6',2"-terpyridine]-6,6"-dicarboxylate (tda2–) ligand that coordinates Ru at the equatorial plane and with additional pyridine or dmso acting as monondentate ligand in the axial positions: [RuII(tda-κ-N3O)(py)(dmso)], 1II and [RuIII(tda-κ-N3O2)(py)(H2O)ax]+, 2III(H2O)+. Complex 1II has been characterized by single-crystal XRD in the solid state and in solution by NMR spectroscopy. The redox properties of 1II and 2III(H2O)+ have been thoroughly investigated by means of cyclic voltammetry and differential pulse voltammetry. Complex 2II(H2O) displays poor catalytic activity with regard to the oxidation of water to dioxygen, and its properties have been analyzed on the basis of foot of the wave analysis and catalytic Tafel plots. The activity of 2II(H2O) has been compared with related water oxidation catalysts (WOCs) previously described in the literature. Despite its moderate activity, 2II(H2O) constitutes the cornerstone that has triggered the rationalization of the different factors that govern overpotentials as well as efficiencies in molecular WOCs. The present work uncovers the interplay between different parameters, namely, coordination number, number of anionic groups bonded to the first-coordination sphere of the metal center, water oxidation catalysis overpotential, pKa and hydrogenmore » bonding, and the performance of a given WOC. It thus establishes the basic principles for the design of efficient WOCs operating at low overpotentials.« less

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [4]; ORCiD logo [5]
  1. Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Univ. Rovira i Virgili, Tarragona (Spain)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Barcelona Institute of Science and Technology (BIST), Tarragona (Spain)
  4. Univ. Autonoma de Barcelona, Barcelona (Spain)
  5. Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Univ. Autonoma de Barcelona, Barcelona (Spain)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1405933
Report Number(s):
BNL-114431-2017-JA
Journal ID: ISSN 2155-5435; R&D Project: CO026; KC0304030
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 7; Journal Issue: 10; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrocatalysis; hydrogen bonding; redox properties; Ru complexes; seven coordination; water oxidation catalysis; water splitting

Citation Formats

Matheu, Roc, Ertem, Mehmed Z., Gimbert-Surinach, Carolina, Benet-Buchholz, Jordi, Sala, Xavier, and Llobet, Antoni. Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts. United States: N. p., 2017. Web. doi:10.1021/acscatal.7b01860.
Matheu, Roc, Ertem, Mehmed Z., Gimbert-Surinach, Carolina, Benet-Buchholz, Jordi, Sala, Xavier, & Llobet, Antoni. Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts. United States. https://doi.org/10.1021/acscatal.7b01860
Matheu, Roc, Ertem, Mehmed Z., Gimbert-Surinach, Carolina, Benet-Buchholz, Jordi, Sala, Xavier, and Llobet, Antoni. Tue . "Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts". United States. https://doi.org/10.1021/acscatal.7b01860. https://www.osti.gov/servlets/purl/1405933.
@article{osti_1405933,
title = {Hydrogen Bonding Rescues Overpotential in Seven-Coordinated Ru Water Oxidation Catalysts},
author = {Matheu, Roc and Ertem, Mehmed Z. and Gimbert-Surinach, Carolina and Benet-Buchholz, Jordi and Sala, Xavier and Llobet, Antoni},
abstractNote = {In this paper, we describe the synthesis, structural characterization, and redox properties of two new Ru complexes containing the dianionic potentially pentadentate [2,2':6',2"-terpyridine]-6,6"-dicarboxylate (tda2–) ligand that coordinates Ru at the equatorial plane and with additional pyridine or dmso acting as monondentate ligand in the axial positions: [RuII(tda-κ-N3O)(py)(dmso)], 1II and [RuIII(tda-κ-N3O2)(py)(H2O)ax]+, 2III(H2O)+. Complex 1II has been characterized by single-crystal XRD in the solid state and in solution by NMR spectroscopy. The redox properties of 1II and 2III(H2O)+ have been thoroughly investigated by means of cyclic voltammetry and differential pulse voltammetry. Complex 2II(H2O) displays poor catalytic activity with regard to the oxidation of water to dioxygen, and its properties have been analyzed on the basis of foot of the wave analysis and catalytic Tafel plots. The activity of 2II(H2O) has been compared with related water oxidation catalysts (WOCs) previously described in the literature. Despite its moderate activity, 2II(H2O) constitutes the cornerstone that has triggered the rationalization of the different factors that govern overpotentials as well as efficiencies in molecular WOCs. The present work uncovers the interplay between different parameters, namely, coordination number, number of anionic groups bonded to the first-coordination sphere of the metal center, water oxidation catalysis overpotential, pKa and hydrogen bonding, and the performance of a given WOC. It thus establishes the basic principles for the design of efficient WOCs operating at low overpotentials.},
doi = {10.1021/acscatal.7b01860},
journal = {ACS Catalysis},
number = 10,
volume = 7,
place = {United States},
year = {Tue Aug 15 00:00:00 EDT 2017},
month = {Tue Aug 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Will Solar-Driven Water-Splitting Devices See the Light of Day?
journal, September 2013

  • McKone, James R.; Lewis, Nathan S.; Gray, Harry B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4021518

Research opportunities to advance solar energy utilization
journal, January 2016


Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

A soluble copper–bipyridine water-oxidation electrocatalyst
journal, May 2012

  • Barnett, Shoshanna M.; Goldberg, Karen I.; Mayer, James M.
  • Nature Chemistry, Vol. 4, Issue 6
  • DOI: 10.1038/nchem.1350

Fast Water Oxidation Using Iron
journal, August 2010

  • Ellis, W. Chadwick; McDaniel, Neal D.; Bernhard, Stefan
  • Journal of the American Chemical Society, Vol. 132, Issue 32
  • DOI: 10.1021/ja104766z

Molecular Water Oxidation Mechanisms Followed by Transition Metals: State of the Art
journal, December 2013

  • Sala, Xavier; Maji, Somnath; Bofill, Roger
  • Accounts of Chemical Research, Vol. 47, Issue 2
  • DOI: 10.1021/ar400169p

Electrochemical and Resonance Raman Spectroscopic Studies of Water-Oxidizing Ruthenium Terpyridyl-Bipyridyl Complexes
journal, December 2016


Molecular Catalysts for Water Oxidation
journal, July 2015


Frontiers of water oxidation: the quest for true catalysts
journal, January 2017

  • Li, J.; Güttinger, R.; Moré, R.
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/C7CS00306D

A molecular catalyst for water oxidation that binds to metal oxide surfaces
journal, March 2015

  • Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7469

A pentanuclear iron catalyst designed for water oxidation
journal, February 2016

  • Okamura, Masaya; Kondo, Mio; Kuga, Reiko
  • Nature, Vol. 530, Issue 7591
  • DOI: 10.1038/nature16529

A New Ru Complex Capable of Catalytically Oxidizing Water to Molecular Dioxygen
journal, June 2004

  • Sens, Cristina; Romero, Isabel; Rodríguez, Montserrat
  • Journal of the American Chemical Society, Vol. 126, Issue 25
  • DOI: 10.1021/ja0486824

Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
journal, February 2010

  • Concepcion, Javier J.; Tsai, Ming-Kang; Muckerman, James T.
  • Journal of the American Chemical Society, Vol. 132, Issue 5, p. 1545-1557
  • DOI: 10.1021/ja904906v

New Powerful and Oxidatively Rugged Dinuclear Ru Water Oxidation Catalyst: Control of Mechanistic Pathways by Tailored Ligand Design
journal, December 2013

  • Neudeck, Sven; Maji, Somnath; López, Isidoro
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja409974b

Electronic Modification of the [Ru II (tpy)(bpy)(OH 2 )] 2+ Scaffold: Effects on Catalytic Water Oxidation
journal, November 2010

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Henderson, Matthew A.
  • Journal of the American Chemical Society, Vol. 132, Issue 45
  • DOI: 10.1021/ja106108y

Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates
journal, September 2011

  • Polyansky, Dmitry E.; Muckerman, James T.; Rochford, Jonathan
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja203249e

Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes
journal, November 2016


A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II
journal, May 2016

  • Schulze, Marcus; Kunz, Valentin; Frischmann, Peter D.
  • Nature Chemistry, Vol. 8, Issue 6
  • DOI: 10.1038/nchem.2503

Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst
journal, November 2016

  • Gimbert-Suriñach, Carolina; Moonshiram, Dooshaye; Francàs, Laia
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08532

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Supramolecular Water Oxidation with Ru-bda-Based Catalysts
journal, November 2014

  • Richmond, Craig J.; Matheu, Roc; Poater, Albert
  • Chemistry - A European Journal, Vol. 20, Issue 52
  • DOI: 10.1002/chem.201405144

Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes
journal, January 2014

  • Wang, Lei; Duan, Lele; Wang, Ying
  • Chem. Commun., Vol. 50, Issue 85
  • DOI: 10.1039/C4CC05069J

Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex
journal, August 2015

  • Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, Jordi
  • Journal of the American Chemical Society, Vol. 137, Issue 33
  • DOI: 10.1021/jacs.5b06541

A Million Turnover Molecular Anode for Catalytic Water Oxidation
journal, November 2016

  • Creus, Jordi; Matheu, Roc; Peñafiel, Itziar
  • Angewandte Chemie International Edition, Vol. 55, Issue 49
  • DOI: 10.1002/anie.201609167

Density Functionals with Broad Applicability in Chemistry
journal, February 2008

  • Zhao, Yan; Truhlar, Donald G.
  • Accounts of Chemical Research, Vol. 41, Issue 2
  • DOI: 10.1021/ar700111a

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Can the Disproportion of Oxidation State III Be Favored in RuII−OH2/RuIVO Systems?
journal, March 2006

  • Masllorens, Ester; Rodríguez, Montserrat; Romero, Isabel
  • Journal of the American Chemical Society, Vol. 128, Issue 16
  • DOI: 10.1021/ja057733+

Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis
journal, November 2016


Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

Water oxidation catalysis with ligand substituted Ru–bpp type complexes
journal, January 2016

  • Roeser, Stephan; Bozoglian, Fernando; Richmond, Craig J.
  • Catalysis Science & Technology, Vol. 6, Issue 13
  • DOI: 10.1039/C6CY00197A

Unraveling the Roles of the Acid Medium, Experimental Probes, and Terminal Oxidant, (NH 4 ) 2 [Ce(NO 3 ) 6 ], in the Study of a Homogeneous Water Oxidation Catalyst
journal, April 2011

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Henderson, Matthew A.
  • Inorganic Chemistry, Vol. 50, Issue 8
  • DOI: 10.1021/ic2000188

Single Site Isomeric Ru WOCs with an Electron-Withdrawing Group: Synthesis, Electrochemical Characterization, and Reactivity
journal, December 2015


Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand
journal, February 2013

  • Tong, Lianpeng; Inge, A. Ken; Duan, Lele
  • Inorganic Chemistry, Vol. 52, Issue 5
  • DOI: 10.1021/ic302446h

Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation
journal, January 2014

  • Li, Fusheng; Li, Lin; Tong, Lianpeng
  • Chem. Commun., Vol. 50, Issue 90
  • DOI: 10.1039/C4CC06959E

The Ru-tpc Water Oxidation Catalyst and Beyond: Water Nucleophilic Attack Pathway versus Radical Coupling Pathway
journal, March 2017


Catalytic Water Oxidation by Ruthenium(II) Quaterpyridine (qpy) Complexes: Evidence for Ruthenium(III) qpy- N , N ′′′-dioxide as the Real Catalysts
journal, October 2014

  • Liu, Yingying; Ng, Siu-Mui; Yiu, Shek-Man
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408795

Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH] Bridging Ligand as an Intermediate for Catalytic Water Oxidation
journal, August 2009

  • Duan, Lele; Fischer, Andreas; Xu, Yunhua
  • Journal of the American Chemical Society, Vol. 131, Issue 30
  • DOI: 10.1021/ja9034686

Concerted O atom-proton transfer in the O--O bond forming step in water oxidation
journal, April 2010

  • Chen, Z.; Concepcion, J. J.; Hu, X.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 16, p. 7225-7229
  • DOI: 10.1073/pnas.1001132107

Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex
journal, April 2015

  • Song, Na; Concepcion, Javier J.; Binstead, Robert A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1500245112

Works referencing / citing this record:

Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2,6‐Pyridinedicarboxylato Ligand
journal, November 2018

  • Hoque, Md Asmaul; Benet‐Buchholz, Jordi; Llobet, Antoni
  • ChemSusChem, Vol. 12, Issue 9
  • DOI: 10.1002/cssc.201802996

Reversible pyrrole-based proton storage/release in ruthenium( ii ) complexes
journal, January 2019

  • Zhang, Zheng-Hao; He, Piao; Kang, Shi-Rui
  • Chemical Communications, Vol. 55, Issue 97
  • DOI: 10.1039/c9cc08288c

The development of molecular water oxidation catalysts
journal, April 2019

  • Matheu, Roc; Garrido-Barros, Pablo; Gil-Sepulcre, Marcos
  • Nature Reviews Chemistry, Vol. 3, Issue 5
  • DOI: 10.1038/s41570-019-0096-0

Low overpotential water oxidation at neutral pH catalyzed by a copper( ii ) porphyrin
journal, January 2019

  • Liu, Yanju; Han, Yongzhen; Zhang, Zongyao
  • Chemical Science, Vol. 10, Issue 9
  • DOI: 10.1039/c8sc04529a

Reversible Decay of Oxygen Evolution Activity of Iridium Catalysts
journal, January 2019

  • Tang-Kong, Robert; Chidsey, Chrisopher E. D.; McIntyre, Paul C.
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0491914jes

Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential
journal, November 2019


Electrochemically Driven Water Oxidation by a Highly Active Ruthenium‐Based Catalyst
journal, April 2019

  • Shatskiy, Andrey; Bardin, Andrey A.; Oschmann, Michael
  • ChemSusChem, Vol. 12, Issue 10
  • DOI: 10.1002/cssc.201900097

Solvent-free aerobic selective oxidation of hydrocarbons catalyzed by porous graphitic carbon encapsulated cobalt composites
journal, January 2018

  • Jiang, Yuchen; Zhang, Chenjun; Li, Yue
  • New Journal of Chemistry, Vol. 42, Issue 20
  • DOI: 10.1039/c8nj03492c

Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
journal, January 2019

  • Praneeth, Vijayendran K. K.; Kondo, Mio; Okamura, Masaya
  • Chemical Science, Vol. 10, Issue 17
  • DOI: 10.1039/c9sc00678h

An Overview of Significant Achievements in Ruthenium-Based Molecular Water Oxidation Catalysis
journal, January 2019