DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex

Abstract

We introduce a new family of complexes with the general formula [Run(tda)(py)2]m+ (n = 2, m = 0, 1; n = 3, m = 1, 2+; n = 4, m = 2, 32+), with tda2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [RuIV(OH)(tda-κ-N3O)(py)2]+, 4H+, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 32+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), including solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H+ can be generated potentiometrically, or voltammetrically, from 32+, and both coexist in solution. While complex 32+ is not catalytically active, the catalytic performance of complex 4H+ is characterized bymore » the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s–1 at pH 7.0 and 50,000 s–1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H+, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.« less

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6]
  1. Institute of Chemical Research of Catalonia (ICIQ), Tarragona (Spain)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Univ. de Valencia, Paterna (Spain)
  4. Yale Univ., New Haven, CT (United States)
  5. Univ. Autonoma de Barcelona, Barcelona (Spain)
  6. Institute of Chemical Research of Catalonia (ICIQ), Tarragona (Spain); Univ. Autonoma de Barcelona, Barcelona (Spain)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1226070
Report Number(s):
BNL-108552-2015-JA
Journal ID: ISSN 0002-7863; R&D Project: CO045; KC0301020
Grant/Contract Number:  
SC00112704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 137; Journal Issue: 33; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Ru complexes; seven coordination; redox properties; water oxidation catalysis; electrocatalysis; water splitting; intramolecular proton transfer

Citation Formats

Matheu, Roc, Ertem, Mehmed Z., Benet-Buchholz, J., Coronado, Eugenio, Batista, Victor S., Sala, Xavier, and Llobet, Antoni. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex. United States: N. p., 2015. Web. doi:10.1021/jacs.5b06541.
Matheu, Roc, Ertem, Mehmed Z., Benet-Buchholz, J., Coronado, Eugenio, Batista, Victor S., Sala, Xavier, & Llobet, Antoni. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex. United States. https://doi.org/10.1021/jacs.5b06541
Matheu, Roc, Ertem, Mehmed Z., Benet-Buchholz, J., Coronado, Eugenio, Batista, Victor S., Sala, Xavier, and Llobet, Antoni. Thu . "Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex". United States. https://doi.org/10.1021/jacs.5b06541. https://www.osti.gov/servlets/purl/1226070.
@article{osti_1226070,
title = {Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex},
author = {Matheu, Roc and Ertem, Mehmed Z. and Benet-Buchholz, J. and Coronado, Eugenio and Batista, Victor S. and Sala, Xavier and Llobet, Antoni},
abstractNote = {We introduce a new family of complexes with the general formula [Run(tda)(py)2]m+ (n = 2, m = 0, 1; n = 3, m = 1, 2+; n = 4, m = 2, 32+), with tda2– being [2,2':6',2"-terpyridine]-6,6"-dicarboxylate, including complex [RuIV(OH)(tda-κ-N3O)(py)2]+, 4H+, which we find to be an impressive water oxidation catalyst, formed by hydroxo coordination to 32+ under basic conditions. The complexes are synthesized, isolated, and thoroughly characterized by analytical, spectroscopic (UV–vis, nuclear magnetic resonance, electron paramagnetic resonance), computational, and electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, coulometry), including solid-state monocrystal X-ray diffraction analysis. In oxidation state IV, the Ru center is seven-coordinated and diamagnetic, whereas in oxidation state II, the complex has an unbonded dangling carboxylate and is six-coordinated while still diamagnetic. With oxidation state III, the coordination number is halfway between the coordination of oxidation states II and IV. Species generated in situ have also been characterized by spectroscopic, computational, and electrochemical techniques, together with the related species derived from a different degree of protonation and oxidation states. 4H+ can be generated potentiometrically, or voltammetrically, from 32+, and both coexist in solution. While complex 32+ is not catalytically active, the catalytic performance of complex 4H+ is characterized by the foot of the wave analysis, giving an impressive turnover frequency record of 8000 s–1 at pH 7.0 and 50,000 s–1 at pH 10.0. Density functional theory calculations provide a complete description of the water oxidation catalytic cycle of 4H+, manifesting the key functional role of the dangling carboxylate in lowering the activation free energies that lead to O–O bond formation.},
doi = {10.1021/jacs.5b06541},
journal = {Journal of the American Chemical Society},
number = 33,
volume = 137,
place = {United States},
year = {Thu Jul 30 00:00:00 EDT 2015},
month = {Thu Jul 30 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 217 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Electronic Modification of the [Ru II (tpy)(bpy)(OH 2 )] 2+ Scaffold: Effects on Catalytic Water Oxidation
journal, November 2010

  • Wasylenko, Derek J.; Ganesamoorthy, Chelladurai; Henderson, Matthew A.
  • Journal of the American Chemical Society, Vol. 132, Issue 45
  • DOI: 10.1021/ja106108y

Supramolecular Water Oxidation with Ru-bda-Based Catalysts
journal, November 2014

  • Richmond, Craig J.; Matheu, Roc; Poater, Albert
  • Chemistry - A European Journal, Vol. 20, Issue 52
  • DOI: 10.1002/chem.201405144

Through-Space Ligand Interactions in Enantiomeric Dinuclear Ru Complexes
journal, June 2010

  • Planas, Nora; Christian, Gemma J.; Mas-Marzá, Elena
  • Chemistry - A European Journal, Vol. 16, Issue 27
  • DOI: 10.1002/chem.201000585

A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability
journal, July 2014


Understanding the eighteen-electron rule
journal, October 2006


The OO Bonding in Water Oxidation: the Electronic Structure Portrayal of a Concerted Oxygen Atom-Proton Transfer Pathway
journal, June 2011

  • Privalov, Timofei; Åkermark, Björn; Sun, Licheng
  • Chemistry - A European Journal, Vol. 17, Issue 30
  • DOI: 10.1002/chem.201100901

Competitive oxygen-18 kinetic isotope effects expose O–O bond formation in water oxidation catalysis by monomeric and dimeric ruthenium complexes
journal, January 2014

  • Angeles-Boza, Alfredo M.; Ertem, Mehmed Z.; Sarma, Rupam
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/c3sc51919h

Role of ligands in catalytic water oxidation by mononuclear ruthenium complexes
journal, December 2015

  • Zeng, Qiang; Lewis, Frank W.; Harwood, Laurence M.
  • Coordination Chemistry Reviews, Vol. 304-305
  • DOI: 10.1016/j.ccr.2015.03.003

The Ru−Hbpp Water Oxidation Catalyst
journal, October 2009

  • Bozoglian, Fernando; Romain, Sophie; Ertem, Mehmed Z.
  • Journal of the American Chemical Society, Vol. 131, Issue 42
  • DOI: 10.1021/ja9036127

A New Ru Complex Capable of Catalytically Oxidizing Water to Molecular Dioxygen
journal, June 2004

  • Sens, Cristina; Romero, Isabel; Rodríguez, Montserrat
  • Journal of the American Chemical Society, Vol. 126, Issue 25
  • DOI: 10.1021/ja0486824

Water Oxidation by a Nickel-Glycine Catalyst
journal, July 2014

  • Wang, Dong; Ghirlanda, Giovanna; Allen, James P.
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja504282w

Dinuclear Ruthenium Complexes Containing the Hpbl Ligand: Synthesis, Characterization, Linkage Isomerism, and Epoxidation Catalysis
journal, September 2014

  • Francàs, Laia; González-Gil, Rosa María; Moyano, Daniel
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic501483s

Oxygen−Oxygen Bond Formation Pathways Promoted by Ruthenium Complexes
journal, December 2009

  • Romain, Sophie; Vigara, Laura; Llobet, Antoni
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900240w

Substitution Reactions in Dinuclear Ru-Hbpp Complexes: an Evaluation of Through-Space Interactions
journal, January 2012

  • Planas, Nora; Christian, Gemma; Roeser, Stephan
  • Inorganic Chemistry, Vol. 51, Issue 3
  • DOI: 10.1021/ic202225g

Water Oxidation by Mononuclear Ruthenium Complexes with TPA-Based Ligands
journal, November 2011

  • Radaram, Bhasker; Ivie, Jeffrey A.; Singh, Wangkheimayum Marjit
  • Inorganic Chemistry, Vol. 50, Issue 21
  • DOI: 10.1021/ic200050g

Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts
journal, September 2011


One Site is Enough. Catalytic Water Oxidation by [Ru(tpy)(bpm)(OH 2 )] 2+ and [Ru(tpy)(bpz)(OH 2 )] 2+
journal, December 2008

  • Concepcion, Javier J.; Jurss, Jonah W.; Templeton, Joseph L.
  • Journal of the American Chemical Society, Vol. 130, Issue 49
  • DOI: 10.1021/ja8059649

Molecular artificial photosynthesis
journal, January 2014

  • Berardi, Serena; Drouet, Samuel; Francàs, Laia
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60405E

Synthesis, Characterization, and Reactivity of Dyad Ruthenium-Based Molecules for Light-Driven Oxidation Catalysis
journal, March 2013

  • Farràs, Pau; Maji, Somnath; Benet-Buchholz, Jordi
  • Chemistry - A European Journal, Vol. 19, Issue 22
  • DOI: 10.1002/chem.201204381

A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production
journal, August 2011

  • Helm, M. L.; Stewart, M. P.; Bullock, R. M.
  • Science, Vol. 333, Issue 6044, p. 863-866
  • DOI: 10.1126/science.1205864

The cis-[RuII(bpy)2(H2O)2]2+ Water-Oxidation Catalyst Revisited
journal, September 2010

  • Sala, Xavier; Ertem, Mehmed Z.; Vigara, Laura
  • Angewandte Chemie International Edition, Vol. 49, Issue 42
  • DOI: 10.1002/anie.201002398

Efficient Chemical and Visible-Light-Driven Water Oxidation using Nickel Complexes and Salts as Precatalysts
journal, October 2013


Catalytic oxidation of water by an oxo-bridged ruthenium dimer
journal, July 1982

  • Gersten, Susan W.; Samuels, George J.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 104, Issue 14
  • DOI: 10.1021/ja00378a053

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Structural Modifications of Mononuclear Ruthenium Complexes:  A Combined Experimental and Theoretical Study on the Kinetics of Ruthenium-Catalyzed Water Oxidation
journal, December 2010

  • Tong, Lianpeng; Duan, Lele; Xu, Yunhua
  • Angewandte Chemie International Edition, Vol. 50, Issue 2
  • DOI: 10.1002/anie.201005141

Multielectron, Multistep Molecular Catalysis of Electrochemical Reactions: Benchmarking of Homogeneous Catalysts
journal, June 2014


Experimental and quantum chemical characterization of the water oxidation cycle catalysed by [RuII(damp)(bpy)(H2O)]2+
journal, January 2012

  • Vigara, Laura; Ertem, Mehmed Z.; Planas, Nora
  • Chemical Science, Vol. 3, Issue 8
  • DOI: 10.1039/c2sc20399e

Mononuclear Ruthenium–Water Oxidation Catalysts: Discerning between Electronic and Hydrogen-Bonding Effects
journal, June 2012

  • Maji, Somnath; López, Isidoro; Bozoglian, Fernando
  • Inorganic Chemistry, Vol. 52, Issue 7
  • DOI: 10.1021/ic3028176

Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis
journal, March 2013

  • Smith, Rodney D. L.; Prévot, Mathieu S.; Fagan, Randal D.
  • Science, Vol. 340, Issue 6128
  • DOI: 10.1126/science.1233638

Redox Non-innocent Ligand Controls Water Oxidation Overpotential in a New Family of Mononuclear Cu-Based Efficient Catalysts
journal, May 2015

  • Garrido-Barros, Pablo; Funes-Ardoiz, Ignacio; Drouet, Samuel
  • Journal of the American Chemical Society, Vol. 137, Issue 21
  • DOI: 10.1021/jacs.5b03977

Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes
journal, May 2015


Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex
journal, April 2015

  • Song, Na; Concepcion, Javier J.; Binstead, Robert A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1500245112

Mechanisms of Photoisomerization and Water-Oxidation Catalysis of Mononuclear Ruthenium(II) Monoaquo Complexes
journal, May 2013

  • Hirahara, Masanari; Ertem, Mehmed Z.; Komi, Manabu
  • Inorganic Chemistry, Vol. 52, Issue 11
  • DOI: 10.1021/ic400054k

Direct Access to Terpyridine-Containing Polyazamacrocycles as Photosensitizing Ligands for Eu(III) Luminescence in Aqueous Media
journal, March 2005

  • Galaup, Chantal; Couchet, Jean-Marc; Bedel, Sébastien
  • The Journal of Organic Chemistry, Vol. 70, Issue 6
  • DOI: 10.1021/jo0480242

Highly Efficient Binuclear Ruthenium Catalyst for Water Oxidation
journal, February 2015


M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics
journal, December 2011

  • Peverati, Roberto; Truhlar, Donald G.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 1
  • DOI: 10.1021/jz201525m

Concerted O atom-proton transfer in the O--O bond forming step in water oxidation
journal, April 2010

  • Chen, Z.; Concepcion, J. J.; Hu, X.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 16, p. 7225-7229
  • DOI: 10.1073/pnas.1001132107

Molecular Catalysts that Oxidize Water to Dioxygen
journal, January 2009

  • Sala, Xavier; Romero, Isabel; Rodríguez, Montserrat
  • Angewandte Chemie International Edition, Vol. 48, Issue 16, p. 2842-2852
  • DOI: 10.1002/anie.200802659

Turnover Numbers, Turnover Frequencies, and Overpotential in Molecular Catalysis of Electrochemical Reactions. Cyclic Voltammetry and Preparative-Scale Electrolysis
journal, June 2012

  • Costentin, Cyrille; Drouet, Samuel; Robert, Marc
  • Journal of the American Chemical Society, Vol. 134, Issue 27, p. 11235-11242
  • DOI: 10.1021/ja303560c

Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution
journal, October 2012

  • Trotochaud, Lena; Ranney, James K.; Williams, Kerisha N.
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja307507a

Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes
journal, January 2014

  • Wang, Lei; Duan, Lele; Wang, Ying
  • Chem. Commun., Vol. 50, Issue 85
  • DOI: 10.1039/C4CC05069J

Evaluation of Homogeneous Electrocatalysts by Cyclic Voltammetry
journal, September 2014

  • Rountree, Eric S.; McCarthy, Brian D.; Eisenhart, Thomas T.
  • Inorganic Chemistry, Vol. 53, Issue 19
  • DOI: 10.1021/ic500658x

Molecular Water Oxidation Mechanisms Followed by Transition Metals: State of the Art
journal, December 2013

  • Sala, Xavier; Maji, Somnath; Bofill, Roger
  • Accounts of Chemical Research, Vol. 47, Issue 2
  • DOI: 10.1021/ar400169p

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
journal, November 2006

  • Zhao, Yan; Truhlar, Donald G.
  • The Journal of Chemical Physics, Vol. 125, Issue 19, Article No. 194101
  • DOI: 10.1063/1.2370993

A Self-Improved Water-Oxidation Catalyst: Is One Site Really Enough?
journal, November 2013

  • López, Isidoro; Ertem, Mehmed Z.; Maji, Somnath
  • Angewandte Chemie International Edition, Vol. 53, Issue 1
  • DOI: 10.1002/anie.201307509

Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
journal, February 2010

  • Concepcion, Javier J.; Tsai, Ming-Kang; Muckerman, James T.
  • Journal of the American Chemical Society, Vol. 132, Issue 5, p. 1545-1557
  • DOI: 10.1021/ja904906v

Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?
journal, August 2013

  • Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke
  • Inorganic Chemistry, Vol. 52, Issue 16
  • DOI: 10.1021/ic401180r

Hard and Soft Acids and Bases
journal, November 1963

  • Pearson, Ralph G.
  • Journal of the American Chemical Society, Vol. 85, Issue 22
  • DOI: 10.1021/ja00905a001

Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH] Bridging Ligand as an Intermediate for Catalytic Water Oxidation
journal, August 2009

  • Duan, Lele; Fischer, Andreas; Xu, Yunhua
  • Journal of the American Chemical Society, Vol. 131, Issue 30
  • DOI: 10.1021/ja9034686

Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates
journal, September 2011

  • Polyansky, Dmitry E.; Muckerman, James T.; Rochford, Jonathan
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja203249e

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex
journal, January 2013

  • Zhang, Ming-Tian; Chen, Zuofeng; Kang, Peng
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja3097515

Works referencing / citing this record:

Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH 2 )
journal, January 2016

  • Scherrer, Dominik; Schilling, Mauro; Luber, Sandra
  • Dalton Transactions, Vol. 45, Issue 48
  • DOI: 10.1039/c6dt03880h

Iridium Water Oxidation Catalysts Based on Pyridine‐Carbene Alkyl‐Substituted Ligands
journal, March 2019

  • Corbucci, Ilaria; Zaccaria, Francesco; Heath, Rachel
  • ChemCatChem, Vol. 11, Issue 21
  • DOI: 10.1002/cctc.201901092

Energetic Effects of a Closed System Approach Including Explicit Proton and Electron Acceptors as Demonstrated by a Mononuclear Ruthenium Water Oxidation Catalyst
journal, August 2018

  • de Ruiter, Jessica M.; de Groot, Huub J. M.; Buda, Francesco
  • ChemCatChem, Vol. 10, Issue 20
  • DOI: 10.1002/cctc.201801093

Structural evolution of the Ru-bms complex to the real water oxidation catalyst of Ru-bda: the bite angle matters
journal, January 2020

  • Yang, Jing; Liu, Bin; Duan, Lele
  • Dalton Transactions, Vol. 49, Issue 14
  • DOI: 10.1039/c9dt04693c

Recent Advances in the Development of Molecular Catalyst‐Based Anodes for Water Oxidation toward Artificial Photosynthesis
journal, November 2018

  • Zahran, Zaki N.; Tsubonouchi, Yuta; Mohamed, Eman A.
  • ChemSusChem, Vol. 12, Issue 9
  • DOI: 10.1002/cssc.201802795

Fe, Ru, and Os complexes with the same molecular framework: comparison of structures, properties and catalytic activities
journal, January 2017

  • Yoshida, Masaki; Kondo, Mio; Okamura, Masaya
  • Faraday Discussions, Vol. 198
  • DOI: 10.1039/c6fd00227g

Ruthenium Water Oxidation Catalysts based on Pentapyridyl Ligands
journal, November 2017

  • Gil-Sepulcre, Marcos; Böhler, Michael; Schilling, Mauro
  • ChemSusChem, Vol. 10, Issue 22
  • DOI: 10.1002/cssc.201701747

Low overpotential water oxidation at neutral pH catalyzed by a copper( ii ) porphyrin
journal, January 2019

  • Liu, Yanju; Han, Yongzhen; Zhang, Zongyao
  • Chemical Science, Vol. 10, Issue 9
  • DOI: 10.1039/c8sc04529a

Energetic Effects of a Closed System Approach Including Explicit Proton and Electron Acceptors as Demonstrated by a Mononuclear Ruthenium Water Oxidation Catalyst
journal, August 2018

  • de Ruiter, Jessica M.; de Groot, Huub J. M.; Buda, Francesco
  • ChemCatChem, Vol. 10, Issue 20
  • DOI: 10.1002/cctc.201801093

Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres
journal, August 2018

  • Yu, Fengshou; Poole, David; Mathew, Simon
  • Angewandte Chemie International Edition, Vol. 57, Issue 35
  • DOI: 10.1002/anie.201805244

Towards the rational design of the Py5-ligand framework for ruthenium-based water oxidation catalysts
text, January 2018

  • Schilling, Mauro; Böhler, Michael; Luber, Sandra
  • Royal Society of Chemistry
  • DOI: 10.5167/uzh-162383

O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling
journal, January 2017

  • Shaffer, David W.; Xie, Yan; Concepcion, Javier J.
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/c7cs00542c

Intramolecular hydrogen-bonding in a cobalt aqua complex and electrochemical water oxidation activity
journal, January 2018

  • Khosrowabadi Kotyk, Juliet F.; Hanna, Caitlin M.; Combs, Rebecca L.
  • Chemical Science, Vol. 9, Issue 10
  • DOI: 10.1039/c7sc04960a

Mononuclear ruthenium polypyridine complexes that catalyze water oxidation
journal, January 2016

  • Tong, Lianpeng; Thummel, Randolph P.
  • Chemical Science, Vol. 7, Issue 11
  • DOI: 10.1039/c6sc02766k

Water Oxidation Catalysts for Artificial Photosynthesis
journal, July 2019


Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy – recent advances
journal, January 2019

  • Das, Biswanath; Thapper, Anders; Ott, Sascha
  • Sustainable Energy & Fuels, Vol. 3, Issue 9
  • DOI: 10.1039/c9se00280d

Kinetics and mechanisms of catalytic water oxidation
journal, January 2019

  • Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo
  • Dalton Transactions, Vol. 48, Issue 3
  • DOI: 10.1039/c8dt04341h

A hybrid molecular photoanode for efficient light-induced water oxidation
journal, January 2018

  • Grau, Sergi; Berardi, Serena; Moya, Alicia
  • Sustainable Energy & Fuels, Vol. 2, Issue 9
  • DOI: 10.1039/c8se00146d

Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres
journal, August 2018

  • Yu, Fengshou; Poole, David; Mathew, Simon
  • Angewandte Chemie International Edition, Vol. 57, Issue 35
  • DOI: 10.1002/anie.201805244

Electrochemically Driven Water Oxidation by a Highly Active Ruthenium‐Based Catalyst
journal, April 2019

  • Shatskiy, Andrey; Bardin, Andrey A.; Oschmann, Michael
  • ChemSusChem, Vol. 12, Issue 10
  • DOI: 10.1002/cssc.201900097

How to make an efficient and robust molecular catalyst for water oxidation
journal, January 2017

  • Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Matheu, Roc
  • Chemical Society Reviews, Vol. 46, Issue 20
  • DOI: 10.1039/c7cs00248c

Electrocatalytic Water Oxidation by a Tetranuclear Copper Complex
journal, October 2016

  • Praneeth, Vijayendran K. K.; Kondo, Mio; Woi, Pei Meng
  • ChemPlusChem, Vol. 81, Issue 10
  • DOI: 10.1002/cplu.201600322

A Bio-inspired Cu 4 O 4 Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution
journal, May 2018

  • Jiang, Xin; Li, Jian; Yang, Bing
  • Angewandte Chemie International Edition, Vol. 57, Issue 26
  • DOI: 10.1002/anie.201803944

Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres
journal, August 2018


Incorporation of redox-inactive cations promotes iron catalyzed aerobic C–H oxidation at mild potentials
journal, January 2018

  • Chantarojsiri, Teera; Ziller, Joseph W.; Yang, Jenny Y.
  • Chemical Science, Vol. 9, Issue 9
  • DOI: 10.1039/c7sc04486k

Mononuclear ruthenium compounds bearing N-donor and N-heterocyclic carbene ligands: structure and oxidative catalysis
journal, January 2017

  • Liu, Hai-Jie; Gil-Sepulcre, Marcos; Francàs, Laia
  • Dalton Transactions, Vol. 46, Issue 9
  • DOI: 10.1039/c6dt04729g

Artificial photosynthesis: opportunities and challenges of molecular catalysts
journal, January 2019

  • Zhang, Biaobiao; Sun, Licheng
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00897c

A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential
journal, November 2017


Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential
journal, November 2019


Catalytic Oxidation of Water to Dioxygen by Mononuclear Ru Complexes Bearing a 2,6‐Pyridinedicarboxylato Ligand
journal, November 2018

  • Hoque, Md Asmaul; Benet‐Buchholz, Jordi; Llobet, Antoni
  • ChemSusChem, Vol. 12, Issue 9
  • DOI: 10.1002/cssc.201802996

Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation
journal, January 2020

  • Fagiolari, Lucia; Zaccaria, Francesco; Costantino, Ferdinando
  • Dalton Transactions, Vol. 49, Issue 8
  • DOI: 10.1039/c9dt04306c

Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation
text, January 2020

  • Fagiolari, Lucia; Zaccaria, Francesco; Costantino, Ferdinando
  • Royal Society of Chemistry
  • DOI: 10.5167/uzh-198940

The development of molecular water oxidation catalysts
journal, April 2019

  • Matheu, Roc; Garrido-Barros, Pablo; Gil-Sepulcre, Marcos
  • Nature Reviews Chemistry, Vol. 3, Issue 5
  • DOI: 10.1038/s41570-019-0096-0

Collaboration between experiment and theory in solar fuels research
journal, January 2019

  • Spies, Jacob A.; Perets, Ethan A.; Fisher, Katherine J.
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00819a

Modeling the Catalyst Activation Step in a Metal–Ligand Radical Mechanism Based Water Oxidation System
journal, May 2019


Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential
journal, November 2019


Iridium Water Oxidation Catalysts Based on Pyridine‐Carbene Alkyl‐Substituted Ligands
text, January 2019


A Bio-inspired Cu 4 O 4 Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution
journal, May 2018


A Charge‐Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface
journal, November 2018

  • Sampaio, Renato N.; Troian‐Gautier, Ludovic; Meyer, Gerald J.
  • Angewandte Chemie, Vol. 130, Issue 47
  • DOI: 10.1002/ange.201807627

A Charge-Separated State that Lives for Almost a Second at a Conductive Metal Oxide Interface
journal, October 2018

  • Sampaio, Renato N.; Troian-Gautier, Ludovic; Meyer, Gerald J.
  • Angewandte Chemie International Edition, Vol. 57, Issue 47
  • DOI: 10.1002/anie.201807627

Early photophysical events of a ruthenium( ii ) molecular dyad capable of performing photochemical water oxidation and of its model compounds
journal, January 2019

  • Nastasi, Francesco; Santoro, Antonio; Serroni, Scolastica
  • Photochemical & Photobiological Sciences, Vol. 18, Issue 9
  • DOI: 10.1039/c8pp00530c

Synthesis and characterization of [Ru(NC NHC O)(bpy)L] + complexes and their reactivity towards water oxidation
journal, January 2018

  • Cai, Fanglin; Su, Wei; Younus, Hussein A.
  • New Journal of Chemistry, Vol. 42, Issue 4
  • DOI: 10.1039/c7nj03198j

Ruthenium water oxidation catalysts containing the non-planar tetradentate ligand, biisoquinoline dicarboxylic acid (biqaH$_2$)
text, January 2016

  • Scherrer, Dominik; Schilling, Mauro; Luber, Sandra
  • Royal Society of Chemistry
  • DOI: 10.5167/uzh-133096

Intramolecular hydrogen-bonding in a cobalt aqua complex and electrochemical water oxidation activity
journal, January 2018

  • Khosrowabadi Kotyk, Juliet F.; Hanna, Caitlin M.; Combs, Rebecca L.
  • Chemical Science, Vol. 9, Issue 10
  • DOI: 10.1039/c7sc04960a

A Million Turnover Molecular Anode for Catalytic Water Oxidation
journal, November 2016

  • Creus, Jordi; Matheu, Roc; Peñafiel, Itziar
  • Angewandte Chemie International Edition, Vol. 55, Issue 49
  • DOI: 10.1002/anie.201609167

Optimization of Synthetically Versatile Pyridylidene Amide Ligands for Efficient Iridium-Catalyzed Water Oxidation
text, January 2018


The Art of Splitting Water: Storing Energy in a Readily Available and Convenient Form: The Art of Splitting Water: Storing Energy in a Readily Available and Convenient Form
journal, March 2019

  • Shatskiy, Andrey; Kärkäs, Markus D.; Åkermark, Björn
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 15
  • DOI: 10.1002/ejic.201801548

Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials
journal, January 2019

  • Praneeth, Vijayendran K. K.; Kondo, Mio; Okamura, Masaya
  • Chemical Science, Vol. 10, Issue 17
  • DOI: 10.1039/c9sc00678h

Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis
journal, February 2020

  • Vereshchuk, Nataliia; Matheu, Roc; Benet-Buchholz, Jordi
  • Journal of the American Chemical Society, Vol. 142, Issue 11
  • DOI: 10.1021/jacs.9b11935

Towards the rational design of the Py5-ligand framework for ruthenium-based water oxidation catalysts
journal, January 2018

  • Schilling, Mauro; Böhler, Michael; Luber, Sandra
  • Dalton Transactions, Vol. 47, Issue 31
  • DOI: 10.1039/c8dt01209a

An Overview of Significant Achievements in Ruthenium-Based Molecular Water Oxidation Catalysis
journal, January 2019


Optimization of Synthetically Versatile Pyridylidene Amide Ligands for Efficient Iridium-Catalyzed Water Oxidation
journal, April 2018

  • Navarro, Miquel; Smith, Christene A.; Li, Mo
  • Chemistry - A European Journal, Vol. 24, Issue 24
  • DOI: 10.1002/chem.201705619

Low overpotential water oxidation at neutral pH catalyzed by a copper( ii ) porphyrin
journal, January 2019

  • Liu, Yanju; Han, Yongzhen; Zhang, Zongyao
  • Chemical Science, Vol. 10, Issue 9
  • DOI: 10.1039/c8sc04529a

A Million Turnover Molecular Anode for Catalytic Water Oxidation
journal, November 2016

  • Creus, Jordi; Matheu, Roc; Peñafiel, Itziar
  • Angewandte Chemie, Vol. 128, Issue 49
  • DOI: 10.1002/ange.201609167

A pentanuclear iron catalyst designed for water oxidation
journal, February 2016

  • Okamura, Masaya; Kondo, Mio; Kuga, Reiko
  • Nature, Vol. 530, Issue 7591
  • DOI: 10.1038/nature16529

Behavior of Ru-bda Water-Oxidation Catalysts in Low Oxidation States
journal, August 2018

  • Matheu, Roc; Ghaderian, Abolfazl; Francàs, Laia
  • Chemistry - A European Journal, Vol. 24, Issue 49
  • DOI: 10.1002/chem.201801236